MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprabs Structured version   Visualization version   Unicode version

Theorem lspprabs 19095
Description: Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015.)
Hypotheses
Ref Expression
lspprabs.v  |-  V  =  ( Base `  W
)
lspprabs.p  |-  .+  =  ( +g  `  W )
lspprabs.n  |-  N  =  ( LSpan `  W )
lspprabs.w  |-  ( ph  ->  W  e.  LMod )
lspprabs.x  |-  ( ph  ->  X  e.  V )
lspprabs.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lspprabs  |-  ( ph  ->  ( N `  { X ,  ( X  .+  Y ) } )  =  ( N `  { X ,  Y }
) )

Proof of Theorem lspprabs
StepHypRef Expression
1 lspprabs.w . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
2 eqid 2622 . . . . . . . 8  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
32lsssssubg 18958 . . . . . . 7  |-  ( W  e.  LMod  ->  ( LSubSp `  W )  C_  (SubGrp `  W ) )
41, 3syl 17 . . . . . 6  |-  ( ph  ->  ( LSubSp `  W )  C_  (SubGrp `  W )
)
5 lspprabs.x . . . . . . 7  |-  ( ph  ->  X  e.  V )
6 lspprabs.v . . . . . . . 8  |-  V  =  ( Base `  W
)
7 lspprabs.n . . . . . . . 8  |-  N  =  ( LSpan `  W )
86, 2, 7lspsncl 18977 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  W ) )
91, 5, 8syl2anc 693 . . . . . 6  |-  ( ph  ->  ( N `  { X } )  e.  (
LSubSp `  W ) )
104, 9sseldd 3604 . . . . 5  |-  ( ph  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
11 lspprabs.y . . . . . . 7  |-  ( ph  ->  Y  e.  V )
126, 2, 7lspsncl 18977 . . . . . . 7  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  W ) )
131, 11, 12syl2anc 693 . . . . . 6  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  W ) )
144, 13sseldd 3604 . . . . 5  |-  ( ph  ->  ( N `  { Y } )  e.  (SubGrp `  W ) )
15 eqid 2622 . . . . . 6  |-  ( LSSum `  W )  =  (
LSSum `  W )
1615lsmub1 18071 . . . . 5  |-  ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { Y } )  e.  (SubGrp `  W ) )  -> 
( N `  { X } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
1710, 14, 16syl2anc 693 . . . 4  |-  ( ph  ->  ( N `  { X } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
182, 15lsmcl 19083 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( N `  { X } )  e.  (
LSubSp `  W )  /\  ( N `  { Y } )  e.  (
LSubSp `  W ) )  ->  ( ( N `
 { X }
) ( LSSum `  W
) ( N `  { Y } ) )  e.  ( LSubSp `  W
) )
191, 9, 13, 18syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) )  e.  ( LSubSp `  W )
)
206, 7lspsnid 18993 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
211, 5, 20syl2anc 693 . . . . . 6  |-  ( ph  ->  X  e.  ( N `
 { X }
) )
226, 7lspsnid 18993 . . . . . . 7  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  Y  e.  ( N `  { Y } ) )
231, 11, 22syl2anc 693 . . . . . 6  |-  ( ph  ->  Y  e.  ( N `
 { Y }
) )
24 lspprabs.p . . . . . . 7  |-  .+  =  ( +g  `  W )
2524, 15lsmelvali 18065 . . . . . 6  |-  ( ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { Y } )  e.  (SubGrp `  W ) )  /\  ( X  e.  ( N `  { X } )  /\  Y  e.  ( N `  { Y } ) ) )  ->  ( X  .+  Y )  e.  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
2610, 14, 21, 23, 25syl22anc 1327 . . . . 5  |-  ( ph  ->  ( X  .+  Y
)  e.  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
272, 7, 1, 19, 26lspsnel5a 18996 . . . 4  |-  ( ph  ->  ( N `  {
( X  .+  Y
) } )  C_  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) ) )
286, 24lmodvacl 18877 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  e.  V )
291, 5, 11, 28syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( X  .+  Y
)  e.  V )
306, 2, 7lspsncl 18977 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V )  ->  ( N `  { ( X  .+  Y ) } )  e.  ( LSubSp `  W ) )
311, 29, 30syl2anc 693 . . . . . 6  |-  ( ph  ->  ( N `  {
( X  .+  Y
) } )  e.  ( LSubSp `  W )
)
324, 31sseldd 3604 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .+  Y
) } )  e.  (SubGrp `  W )
)
334, 19sseldd 3604 . . . . 5  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) )  e.  (SubGrp `  W )
)
3415lsmlub 18078 . . . . 5  |-  ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { ( X  .+  Y ) } )  e.  (SubGrp `  W )  /\  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) )  e.  (SubGrp `  W ) )  -> 
( ( ( N `
 { X }
)  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) )  /\  ( N `  { ( X  .+  Y ) } )  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )  <->  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) ) )
3510, 32, 33, 34syl3anc 1326 . . . 4  |-  ( ph  ->  ( ( ( N `
 { X }
)  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) )  /\  ( N `  { ( X  .+  Y ) } )  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )  <->  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) ) )
3617, 27, 35mpbi2and 956 . . 3  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) )  C_  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) ) )
3715lsmub1 18071 . . . . 5  |-  ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { ( X  .+  Y ) } )  e.  (SubGrp `  W ) )  -> 
( N `  { X } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )
3810, 32, 37syl2anc 693 . . . 4  |-  ( ph  ->  ( N `  { X } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )
392, 15lsmcl 19083 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( N `  { X } )  e.  (
LSubSp `  W )  /\  ( N `  { ( X  .+  Y ) } )  e.  (
LSubSp `  W ) )  ->  ( ( N `
 { X }
) ( LSSum `  W
) ( N `  { ( X  .+  Y ) } ) )  e.  ( LSubSp `  W ) )
401, 9, 31, 39syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) )  e.  ( LSubSp `  W )
)
41 eqid 2622 . . . . . . 7  |-  ( -g `  W )  =  (
-g `  W )
426, 7lspsnid 18993 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V )  ->  ( X  .+  Y )  e.  ( N `  {
( X  .+  Y
) } ) )
431, 29, 42syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( X  .+  Y
)  e.  ( N `
 { ( X 
.+  Y ) } ) )
4441, 15, 32, 10, 43, 21lsmelvalmi 18067 . . . . . 6  |-  ( ph  ->  ( ( X  .+  Y ) ( -g `  W ) X )  e.  ( ( N `
 { ( X 
.+  Y ) } ) ( LSSum `  W
) ( N `  { X } ) ) )
45 lmodabl 18910 . . . . . . . 8  |-  ( W  e.  LMod  ->  W  e. 
Abel )
461, 45syl 17 . . . . . . 7  |-  ( ph  ->  W  e.  Abel )
476, 24, 41ablpncan2 18221 . . . . . . 7  |-  ( ( W  e.  Abel  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
) ( -g `  W
) X )  =  Y )
4846, 5, 11, 47syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( X  .+  Y ) ( -g `  W ) X )  =  Y )
4915lsmcom 18261 . . . . . . 7  |-  ( ( W  e.  Abel  /\  ( N `  { ( X  .+  Y ) } )  e.  (SubGrp `  W )  /\  ( N `  { X } )  e.  (SubGrp `  W ) )  -> 
( ( N `  { ( X  .+  Y ) } ) ( LSSum `  W )
( N `  { X } ) )  =  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) ) )
5046, 32, 10, 49syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( N `  { ( X  .+  Y ) } ) ( LSSum `  W )
( N `  { X } ) )  =  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) ) )
5144, 48, 503eltr3d 2715 . . . . 5  |-  ( ph  ->  Y  e.  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )
522, 7, 1, 40, 51lspsnel5a 18996 . . . 4  |-  ( ph  ->  ( N `  { Y } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )
534, 40sseldd 3604 . . . . 5  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) )  e.  (SubGrp `  W )
)
5415lsmlub 18078 . . . . 5  |-  ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { Y } )  e.  (SubGrp `  W )  /\  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) )  e.  (SubGrp `  W ) )  -> 
( ( ( N `
 { X }
)  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) )  /\  ( N `  { Y } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )  <->  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) ) )
5510, 14, 53, 54syl3anc 1326 . . . 4  |-  ( ph  ->  ( ( ( N `
 { X }
)  C_  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) )  /\  ( N `  { Y } )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) )  <->  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) )  C_  (
( N `  { X } ) ( LSSum `  W ) ( N `
 { ( X 
.+  Y ) } ) ) ) )
5638, 52, 55mpbi2and 956 . . 3  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) )  C_  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) ) )
5736, 56eqssd 3620 . 2  |-  ( ph  ->  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { ( X  .+  Y ) } ) )  =  ( ( N `  { X } ) (
LSSum `  W ) ( N `  { Y } ) ) )
586, 7, 15, 1, 5, 29lsmpr 19089 . 2  |-  ( ph  ->  ( N `  { X ,  ( X  .+  Y ) } )  =  ( ( N `
 { X }
) ( LSSum `  W
) ( N `  { ( X  .+  Y ) } ) ) )
596, 7, 15, 1, 5, 11lsmpr 19089 . 2  |-  ( ph  ->  ( N `  { X ,  Y }
)  =  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
6057, 58, 593eqtr4d 2666 1  |-  ( ph  ->  ( N `  { X ,  ( X  .+  Y ) } )  =  ( N `  { X ,  Y }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   -gcsg 17424  SubGrpcsubg 17588   LSSumclsm 18049   Abelcabl 18194   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972
This theorem is referenced by:  lspabs2  19120  lspindp4  19137  mapdindp4  37012
  Copyright terms: Public domain W3C validator