MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem2 Structured version   Visualization version   GIF version

Theorem lsppratlem2 19148
Description: Lemma for lspprat 19153. Show that if 𝑋 and 𝑌 are both in (𝑁‘{𝑥, 𝑦}) (which will be our goal for each of the two cases above), then (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈, contradicting the hypothesis for 𝑈. (Contributed by NM, 29-Aug-2014.) (Revised by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem2.x1 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
lsppratlem2.y1 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
Assertion
Ref Expression
lsppratlem2 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)

Proof of Theorem lsppratlem2
StepHypRef Expression
1 lspprat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lspprat.n . . 3 𝑁 = (LSpan‘𝑊)
3 lspprat.w . . . 4 (𝜑𝑊 ∈ LVec)
4 lveclmod 19106 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . 3 (𝜑𝑊 ∈ LMod)
6 lsppratlem1.x2 . . . . . . 7 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
76eldifad 3586 . . . . . 6 (𝜑𝑥𝑈)
8 lsppratlem1.y2 . . . . . . 7 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
98eldifad 3586 . . . . . 6 (𝜑𝑦𝑈)
10 prssi 4353 . . . . . 6 ((𝑥𝑈𝑦𝑈) → {𝑥, 𝑦} ⊆ 𝑈)
117, 9, 10syl2anc 693 . . . . 5 (𝜑 → {𝑥, 𝑦} ⊆ 𝑈)
12 lspprat.u . . . . . 6 (𝜑𝑈𝑆)
13 lspprat.v . . . . . . 7 𝑉 = (Base‘𝑊)
1413, 1lssss 18937 . . . . . 6 (𝑈𝑆𝑈𝑉)
1512, 14syl 17 . . . . 5 (𝜑𝑈𝑉)
1611, 15sstrd 3613 . . . 4 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
1713, 1, 2lspcl 18976 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆)
185, 16, 17syl2anc 693 . . 3 (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆)
19 lsppratlem2.x1 . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
20 lsppratlem2.y1 . . 3 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
211, 2, 5, 18, 19, 20lspprss 18992 . 2 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
221, 2, 5, 12, 7, 9lspprss 18992 . 2 (𝜑 → (𝑁‘{𝑥, 𝑦}) ⊆ 𝑈)
2321, 22sstrd 3613 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cdif 3571  wss 3574  wpss 3575  {csn 4177  {cpr 4179  cfv 5888  Basecbs 15857  0gc0g 16100  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  lsppratlem5  19151
  Copyright terms: Public domain W3C validator