![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metnrmlem2 | Structured version Visualization version GIF version |
Description: Lemma for metnrm 22665. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
metnrmlem.1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
metnrmlem.2 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
metnrmlem.3 | ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) |
metnrmlem.4 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
metnrmlem.u | ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) |
Ref | Expression |
---|---|
metnrmlem2 | ⊢ (𝜑 → (𝑈 ∈ 𝐽 ∧ 𝑇 ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metnrmlem.u | . . 3 ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) | |
2 | metnrmlem.1 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | metdscn.j | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
4 | 3 | mopntop 22245 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
6 | 2 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝐷 ∈ (∞Met‘𝑋)) |
7 | metnrmlem.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) | |
8 | eqid 2622 | . . . . . . . . . 10 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
9 | 8 | cldss 20833 | . . . . . . . . 9 ⊢ (𝑇 ∈ (Clsd‘𝐽) → 𝑇 ⊆ ∪ 𝐽) |
10 | 7, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) |
11 | 3 | mopnuni 22246 | . . . . . . . . 9 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
12 | 2, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
13 | 10, 12 | sseqtr4d 3642 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
14 | 13 | sselda 3603 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑋) |
15 | metdscn.f | . . . . . . . . . 10 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
16 | metnrmlem.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) | |
17 | metnrmlem.4 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
18 | 15, 3, 2, 16, 7, 17 | metnrmlem1a 22661 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (0 < (𝐹‘𝑡) ∧ if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) ∈ ℝ+)) |
19 | 18 | simprd 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) ∈ ℝ+) |
20 | 19 | rphalfcld 11884 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2) ∈ ℝ+) |
21 | 20 | rpxrd 11873 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2) ∈ ℝ*) |
22 | 3 | blopn 22305 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡 ∈ 𝑋 ∧ (if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2) ∈ ℝ*) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) |
23 | 6, 14, 21, 22 | syl3anc 1326 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) |
24 | 23 | ralrimiva 2966 | . . . 4 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) |
25 | iunopn 20703 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∀𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) → ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) | |
26 | 5, 24, 25 | syl2anc 693 | . . 3 ⊢ (𝜑 → ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) |
27 | 1, 26 | syl5eqel 2705 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝐽) |
28 | blcntr 22218 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡 ∈ 𝑋 ∧ (if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2) ∈ ℝ+) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) | |
29 | 6, 14, 20, 28 | syl3anc 1326 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) |
30 | 29 | snssd 4340 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) |
31 | 30 | ralrimiva 2966 | . . . 4 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) |
32 | ss2iun 4536 | . . . 4 ⊢ (∀𝑡 ∈ 𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) → ∪ 𝑡 ∈ 𝑇 {𝑡} ⊆ ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) | |
33 | 31, 32 | syl 17 | . . 3 ⊢ (𝜑 → ∪ 𝑡 ∈ 𝑇 {𝑡} ⊆ ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) |
34 | iunid 4575 | . . . 4 ⊢ ∪ 𝑡 ∈ 𝑇 {𝑡} = 𝑇 | |
35 | 34 | eqcomi 2631 | . . 3 ⊢ 𝑇 = ∪ 𝑡 ∈ 𝑇 {𝑡} |
36 | 33, 35, 1 | 3sstr4g 3646 | . 2 ⊢ (𝜑 → 𝑇 ⊆ 𝑈) |
37 | 27, 36 | jca 554 | 1 ⊢ (𝜑 → (𝑈 ∈ 𝐽 ∧ 𝑇 ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ifcif 4086 {csn 4177 ∪ cuni 4436 ∪ ciun 4520 class class class wbr 4653 ↦ cmpt 4729 ran crn 5115 ‘cfv 5888 (class class class)co 6650 infcinf 8347 0cc0 9936 1c1 9937 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 / cdiv 10684 2c2 11070 ℝ+crp 11832 ∞Metcxmt 19731 ballcbl 19733 MetOpencmopn 19736 Topctop 20698 Clsdccld 20820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-icc 12182 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 |
This theorem is referenced by: metnrmlem3 22664 |
Copyright terms: Public domain | W3C validator |