MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmul1 Structured version   Visualization version   GIF version

Theorem modmul1 12723
Description: Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modmul1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))

Proof of Theorem modmul1
StepHypRef Expression
1 modval 12670 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
2 modval 12670 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
31, 2eqeqan12d 2638 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
43anandirs 874 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
54adantrl 752 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
6 oveq1 6657 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
75, 6syl6bi 243 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
8 rpcn 11841 . . . . . . . . . . 11 (𝐷 ∈ ℝ+𝐷 ∈ ℂ)
98ad2antll 765 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℂ)
10 zcn 11382 . . . . . . . . . . 11 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1110ad2antrl 764 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
12 rerpdivcl 11861 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 / 𝐷) ∈ ℝ)
1312flcld 12599 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
1413zcnd 11483 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
1514adantrl 752 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
169, 11, 15mulassd 10063 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))))
179, 11, 15mul32d 10246 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
1816, 17eqtr3d 2658 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
1918oveq2d 6666 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
20 recn 10026 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2120adantr 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐴 ∈ ℂ)
228adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
2322, 14mulcld 10060 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2423adantrl 752 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2521, 24, 11subdird 10487 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
2619, 25eqtr4d 2659 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
2726adantlr 751 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
288ad2antll 765 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℂ)
2910ad2antrl 764 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
30 rerpdivcl 11861 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 / 𝐷) ∈ ℝ)
3130flcld 12599 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
3231zcnd 11483 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3332adantrl 752 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3428, 29, 33mulassd 10063 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))
3528, 29, 33mul32d 10246 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3634, 35eqtr3d 2658 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3736oveq2d 6666 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
38 recn 10026 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3938adantr 481 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐵 ∈ ℂ)
408adantl 482 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
4140, 32mulcld 10060 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4241adantrl 752 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4339, 42, 29subdird 10487 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
4437, 43eqtr4d 2659 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4544adantll 750 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4627, 45eqeq12d 2637 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
477, 46sylibrd 249 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))))
48 oveq1 6657 . . . 4 (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷))
49 zre 11381 . . . . . . . . 9 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
50 remulcl 10021 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
5149, 50sylan2 491 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℝ)
5251adantrr 753 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐴 · 𝐶) ∈ ℝ)
53 simprr 796 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
54 simprl 794 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℤ)
5513adantrl 752 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
5654, 55zmulcld 11488 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ)
57 modcyc2 12706 . . . . . . 7 (((𝐴 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5852, 53, 56, 57syl3anc 1326 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5958adantlr 751 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
60 remulcl 10021 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
6149, 60sylan2 491 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
6261adantrr 753 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐵 · 𝐶) ∈ ℝ)
63 simprr 796 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
64 simprl 794 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℤ)
6531adantrl 752 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
6664, 65zmulcld 11488 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ)
67 modcyc2 12706 . . . . . . 7 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
6862, 63, 66, 67syl3anc 1326 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
6968adantll 750 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
7059, 69eqeq12d 2637 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) ↔ ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
7148, 70syl5ib 234 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
7247, 71syld 47 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
73723impia 1261 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cc 9934  cr 9935   · cmul 9941  cmin 10266   / cdiv 10684  cz 11377  +crp 11832  cfl 12591   mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669
This theorem is referenced by:  modmul12d  12724  modnegd  12725  modmulmod  12735  eulerthlem2  15487  fermltl  15489  odzdvds  15500  wilthlem2  24795  lgsdir2lem4  25053  lgsdirprm  25056  gausslemma2d  25099  pellexlem6  37398
  Copyright terms: Public domain W3C validator