MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmuladdnn0 Structured version   Visualization version   Unicode version

Theorem modmuladdnn0 12714
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
modmuladdnn0  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
( ( A  mod  M )  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
Distinct variable groups:    A, k    B, k    k, M

Proof of Theorem modmuladdnn0
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  i  e.  ZZ )
21adantr 481 . . . . 5  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
i  e.  ZZ )
3 nn0cn 11302 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  A  e.  CC )
43adantr 481 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  ->  A  e.  CC )
54ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  A  e.  CC )
6 nn0re 11301 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN0  ->  A  e.  RR )
7 modcl 12672 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  M  e.  RR+ )  -> 
( A  mod  M
)  e.  RR )
86, 7sylan 488 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
( A  mod  M
)  e.  RR )
98recnd 10068 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
( A  mod  M
)  e.  CC )
109adantr 481 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M
)  =  B )  ->  ( A  mod  M )  e.  CC )
11 eleq1 2689 . . . . . . . . . . . . 13  |-  ( ( A  mod  M )  =  B  ->  (
( A  mod  M
)  e.  CC  <->  B  e.  CC ) )
1211adantl 482 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M
)  =  B )  ->  ( ( A  mod  M )  e.  CC  <->  B  e.  CC ) )
1310, 12mpbid 222 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M
)  =  B )  ->  B  e.  CC )
1413adantr 481 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  B  e.  CC )
15 zcn 11382 . . . . . . . . . . . 12  |-  ( i  e.  ZZ  ->  i  e.  CC )
1615adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  i  e.  CC )
17 rpcn 11841 . . . . . . . . . . . . 13  |-  ( M  e.  RR+  ->  M  e.  CC )
1817adantl 482 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  ->  M  e.  CC )
1918ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M  e.  CC )
2016, 19mulcld 10060 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
i  x.  M )  e.  CC )
215, 14, 20subadd2d 10411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  =  ( i  x.  M )  <->  ( (
i  x.  M )  +  B )  =  A ) )
22 eqcom 2629 . . . . . . . . 9  |-  ( A  =  ( ( i  x.  M )  +  B )  <->  ( (
i  x.  M )  +  B )  =  A )
2321, 22syl6rbbr 279 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  <->  ( A  -  B )  =  ( i  x.  M ) ) )
243ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M
)  =  B )  ->  A  e.  CC )
2524, 13subcld 10392 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M
)  =  B )  ->  ( A  -  B )  e.  CC )
2625adantr 481 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  -  B )  e.  CC )
27 rpcnne0 11850 . . . . . . . . . . 11  |-  ( M  e.  RR+  ->  ( M  e.  CC  /\  M  =/=  0 ) )
2827adantl 482 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
( M  e.  CC  /\  M  =/=  0 ) )
2928ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( M  e.  CC  /\  M  =/=  0 ) )
30 divmul3 10690 . . . . . . . . 9  |-  ( ( ( A  -  B
)  e.  CC  /\  i  e.  CC  /\  ( M  e.  CC  /\  M  =/=  0 ) )  -> 
( ( ( A  -  B )  /  M )  =  i  <-> 
( A  -  B
)  =  ( i  x.  M ) ) )
3126, 16, 29, 30syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( ( A  -  B )  /  M
)  =  i  <->  ( A  -  B )  =  ( i  x.  M ) ) )
32 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( B  =  ( A  mod  M )  ->  ( A  -  B )  =  ( A  -  ( A  mod  M ) ) )
3332oveq1d 6665 . . . . . . . . . . . . 13  |-  ( B  =  ( A  mod  M )  ->  ( ( A  -  B )  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M ) )
3433eqcoms 2630 . . . . . . . . . . . 12  |-  ( ( A  mod  M )  =  B  ->  (
( A  -  B
)  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M
) )
3534adantl 482 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M
)  =  B )  ->  ( ( A  -  B )  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M ) )
3635adantr 481 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M
) )
37 moddiffl 12681 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  M  e.  RR+ )  -> 
( ( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M
) ) )
386, 37sylan 488 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
( ( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M
) ) )
3938ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
4036, 39eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  /  M )  =  ( |_ `  ( A  /  M
) ) )
4140eqeq1d 2624 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( ( A  -  B )  /  M
)  =  i  <->  ( |_ `  ( A  /  M
) )  =  i ) )
4223, 31, 413bitr2d 296 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  <->  ( |_ `  ( A  /  M
) )  =  i ) )
43 nn0ge0 11318 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  0  <_  A )
446, 43jca 554 . . . . . . . . . . 11  |-  ( A  e.  NN0  ->  ( A  e.  RR  /\  0  <_  A ) )
45 rpregt0 11846 . . . . . . . . . . 11  |-  ( M  e.  RR+  ->  ( M  e.  RR  /\  0  <  M ) )
46 divge0 10892 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( M  e.  RR  /\  0  <  M ) )  ->  0  <_  ( A  /  M ) )
4744, 45, 46syl2an 494 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
0  <_  ( A  /  M ) )
486adantr 481 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  ->  A  e.  RR )
49 rpre 11839 . . . . . . . . . . . . 13  |-  ( M  e.  RR+  ->  M  e.  RR )
5049adantl 482 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  ->  M  e.  RR )
51 rpne0 11848 . . . . . . . . . . . . 13  |-  ( M  e.  RR+  ->  M  =/=  0 )
5251adantl 482 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  ->  M  =/=  0 )
5348, 50, 52redivcld 10853 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
( A  /  M
)  e.  RR )
54 0z 11388 . . . . . . . . . . 11  |-  0  e.  ZZ
55 flge 12606 . . . . . . . . . . 11  |-  ( ( ( A  /  M
)  e.  RR  /\  0  e.  ZZ )  ->  ( 0  <_  ( A  /  M )  <->  0  <_  ( |_ `  ( A  /  M ) ) ) )
5653, 54, 55sylancl 694 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
( 0  <_  ( A  /  M )  <->  0  <_  ( |_ `  ( A  /  M ) ) ) )
5747, 56mpbid 222 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
0  <_  ( |_ `  ( A  /  M
) ) )
58 breq2 4657 . . . . . . . . 9  |-  ( ( |_ `  ( A  /  M ) )  =  i  ->  (
0  <_  ( |_ `  ( A  /  M
) )  <->  0  <_  i ) )
5957, 58syl5ibcom 235 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
( ( |_ `  ( A  /  M
) )  =  i  ->  0  <_  i
) )
6059ad2antrr 762 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( |_ `  ( A  /  M ) )  =  i  ->  0  <_  i ) )
6142, 60sylbid 230 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  -> 
0  <_  i )
)
6261imp 445 . . . . 5  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
0  <_  i )
63 elnn0z 11390 . . . . 5  |-  ( i  e.  NN0  <->  ( i  e.  ZZ  /\  0  <_ 
i ) )
642, 62, 63sylanbrc 698 . . . 4  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
i  e.  NN0 )
65 oveq1 6657 . . . . . . 7  |-  ( k  =  i  ->  (
k  x.  M )  =  ( i  x.  M ) )
6665oveq1d 6665 . . . . . 6  |-  ( k  =  i  ->  (
( k  x.  M
)  +  B )  =  ( ( i  x.  M )  +  B ) )
6766eqeq2d 2632 . . . . 5  |-  ( k  =  i  ->  ( A  =  ( (
k  x.  M )  +  B )  <->  A  =  ( ( i  x.  M )  +  B
) ) )
6867adantl 482 . . . 4  |-  ( ( ( ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  (
( i  x.  M
)  +  B ) )  /\  k  =  i )  ->  ( A  =  ( (
k  x.  M )  +  B )  <->  A  =  ( ( i  x.  M )  +  B
) ) )
69 simpr 477 . . . 4  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  ->  A  =  ( (
i  x.  M )  +  B ) )
7064, 68, 69rspcedvd 3317 . . 3  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) )
71 nn0z 11400 . . . . 5  |-  ( A  e.  NN0  ->  A  e.  ZZ )
72 modmuladdim 12713 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  RR+ )  -> 
( ( A  mod  M )  =  B  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) ) )
7371, 72sylan 488 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
( ( A  mod  M )  =  B  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) ) )
7473imp 445 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M
)  =  B )  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) )
7570, 74r19.29a 3078 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  RR+ )  /\  ( A  mod  M
)  =  B )  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) )
7675ex 450 1  |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  -> 
( ( A  mod  M )  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NN0cn0 11292   ZZcz 11377   RR+crp 11832   |_cfl 12591    mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fl 12593  df-mod 12669
This theorem is referenced by:  2lgslem3a1  25125  2lgslem3b1  25126  2lgslem3c1  25127  2lgslem3d1  25128
  Copyright terms: Public domain W3C validator