Proof of Theorem modprmn0modprm0
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1064 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝑃 ∈ ℙ) |
| 2 | | prmnn 15388 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 3 | | zmodfzo 12693 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑁 mod 𝑃) ∈ (0..^𝑃)) |
| 4 | 2, 3 | sylan2 491 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑁 mod 𝑃) ∈ (0..^𝑃)) |
| 5 | 4 | ancoms 469 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑃) ∈ (0..^𝑃)) |
| 6 | 5 | 3adant3 1081 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ (0..^𝑃)) |
| 7 | | fzo1fzo0n0 12518 |
. . . . . . . 8
⊢ ((𝑁 mod 𝑃) ∈ (1..^𝑃) ↔ ((𝑁 mod 𝑃) ∈ (0..^𝑃) ∧ (𝑁 mod 𝑃) ≠ 0)) |
| 8 | 7 | simplbi2com 657 |
. . . . . . 7
⊢ ((𝑁 mod 𝑃) ≠ 0 → ((𝑁 mod 𝑃) ∈ (0..^𝑃) → (𝑁 mod 𝑃) ∈ (1..^𝑃))) |
| 9 | 8 | 3ad2ant3 1084 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → ((𝑁 mod 𝑃) ∈ (0..^𝑃) → (𝑁 mod 𝑃) ∈ (1..^𝑃))) |
| 10 | 6, 9 | mpd 15 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ (1..^𝑃)) |
| 11 | 10 | adantr 481 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑁 mod 𝑃) ∈ (1..^𝑃)) |
| 12 | | simpr 477 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝐼 ∈ (0..^𝑃)) |
| 13 | | nnnn0modprm0 15511 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 mod 𝑃) ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0) |
| 14 | 1, 11, 12, 13 | syl3anc 1326 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0) |
| 15 | | elfzoelz 12470 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0..^𝑃) → 𝑗 ∈ ℤ) |
| 16 | 15 | zcnd 11483 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0..^𝑃) → 𝑗 ∈ ℂ) |
| 17 | 2 | anim1i 592 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ∈ ℕ ∧ 𝑁 ∈
ℤ)) |
| 18 | 17 | ancomd 467 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑃 ∈
ℕ)) |
| 19 | | zmodcl 12690 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑁 mod 𝑃) ∈
ℕ0) |
| 20 | | nn0cn 11302 |
. . . . . . . . . . . 12
⊢ ((𝑁 mod 𝑃) ∈ ℕ0 → (𝑁 mod 𝑃) ∈ ℂ) |
| 21 | 18, 19, 20 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑃) ∈ ℂ) |
| 22 | 21 | 3adant3 1081 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ ℂ) |
| 23 | 22 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑁 mod 𝑃) ∈ ℂ) |
| 24 | | mulcom 10022 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℂ ∧ (𝑁 mod 𝑃) ∈ ℂ) → (𝑗 · (𝑁 mod 𝑃)) = ((𝑁 mod 𝑃) · 𝑗)) |
| 25 | 16, 23, 24 | syl2anr 495 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝑗 · (𝑁 mod 𝑃)) = ((𝑁 mod 𝑃) · 𝑗)) |
| 26 | 25 | oveq2d 6666 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝐼 + (𝑗 · (𝑁 mod 𝑃))) = (𝐼 + ((𝑁 mod 𝑃) · 𝑗))) |
| 27 | 26 | oveq1d 6665 |
. . . . . 6
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃)) |
| 28 | | elfzoelz 12470 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (0..^𝑃) → 𝐼 ∈ ℤ) |
| 29 | 28 | zred 11482 |
. . . . . . . . 9
⊢ (𝐼 ∈ (0..^𝑃) → 𝐼 ∈ ℝ) |
| 30 | 29 | adantl 482 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝐼 ∈ ℝ) |
| 31 | 30 | adantr 481 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝐼 ∈ ℝ) |
| 32 | | zre 11381 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 33 | 32 | 3ad2ant2 1083 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → 𝑁 ∈ ℝ) |
| 34 | 33 | adantr 481 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝑁 ∈ ℝ) |
| 35 | 34 | adantr 481 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℝ) |
| 36 | 15 | adantl 482 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑗 ∈ ℤ) |
| 37 | 2 | nnrpd 11870 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ+) |
| 38 | 37 | 3ad2ant1 1082 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → 𝑃 ∈
ℝ+) |
| 39 | 38 | adantr 481 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝑃 ∈
ℝ+) |
| 40 | 39 | adantr 481 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑃 ∈
ℝ+) |
| 41 | | modaddmulmod 12737 |
. . . . . . 7
⊢ (((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑗 ∈ ℤ) ∧ 𝑃 ∈ ℝ+)
→ ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃) = ((𝐼 + (𝑁 · 𝑗)) mod 𝑃)) |
| 42 | 31, 35, 36, 40, 41 | syl31anc 1329 |
. . . . . 6
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃) = ((𝐼 + (𝑁 · 𝑗)) mod 𝑃)) |
| 43 | | zcn 11382 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 44 | 43 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℂ) |
| 45 | 16 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → 𝑗 ∈ ℂ) |
| 46 | 44, 45 | mulcomd 10061 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → (𝑁 · 𝑗) = (𝑗 · 𝑁)) |
| 47 | 46 | ex 450 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁))) |
| 48 | 47 | 3ad2ant2 1083 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁))) |
| 49 | 48 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁))) |
| 50 | 49 | imp 445 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝑁 · 𝑗) = (𝑗 · 𝑁)) |
| 51 | 50 | oveq2d 6666 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝐼 + (𝑁 · 𝑗)) = (𝐼 + (𝑗 · 𝑁))) |
| 52 | 51 | oveq1d 6665 |
. . . . . 6
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑁 · 𝑗)) mod 𝑃) = ((𝐼 + (𝑗 · 𝑁)) mod 𝑃)) |
| 53 | 27, 42, 52 | 3eqtrrd 2661 |
. . . . 5
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃)) |
| 54 | 53 | eqeq1d 2624 |
. . . 4
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0)) |
| 55 | 54 | rexbidva 3049 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0)) |
| 56 | 14, 55 | mpbird 247 |
. 2
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0) |
| 57 | 56 | ex 450 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)) |