MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modprmn0modprm0 Structured version   Visualization version   Unicode version

Theorem modprmn0modprm0 15512
Description: For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.)
Assertion
Ref Expression
modprmn0modprm0  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
I  e.  ( 0..^ P )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
Distinct variable groups:    j, I    j, N    P, j

Proof of Theorem modprmn0modprm0
StepHypRef Expression
1 simpl1 1064 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  P  e.  Prime )
2 prmnn 15388 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
3 zmodfzo 12693 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  P  e.  NN )  ->  ( N  mod  P
)  e.  ( 0..^ P ) )
42, 3sylan2 491 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  P  e.  Prime )  -> 
( N  mod  P
)  e.  ( 0..^ P ) )
54ancoms 469 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( N  mod  P )  e.  ( 0..^ P ) )
653adant3 1081 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  ( N  mod  P )  e.  ( 0..^ P ) )
7 fzo1fzo0n0 12518 . . . . . . . 8  |-  ( ( N  mod  P )  e.  ( 1..^ P )  <->  ( ( N  mod  P )  e.  ( 0..^ P )  /\  ( N  mod  P )  =/=  0 ) )
87simplbi2com 657 . . . . . . 7  |-  ( ( N  mod  P )  =/=  0  ->  (
( N  mod  P
)  e.  ( 0..^ P )  ->  ( N  mod  P )  e.  ( 1..^ P ) ) )
983ad2ant3 1084 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
( N  mod  P
)  e.  ( 0..^ P )  ->  ( N  mod  P )  e.  ( 1..^ P ) ) )
106, 9mpd 15 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  ( N  mod  P )  e.  ( 1..^ P ) )
1110adantr 481 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( N  mod  P
)  e.  ( 1..^ P ) )
12 simpr 477 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  I  e.  ( 0..^ P ) )
13 nnnn0modprm0 15511 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  mod  P )  e.  ( 1..^ P )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod  P )  =  0 )
141, 11, 12, 13syl3anc 1326 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod  P )  =  0 )
15 elfzoelz 12470 . . . . . . . . . 10  |-  ( j  e.  ( 0..^ P )  ->  j  e.  ZZ )
1615zcnd 11483 . . . . . . . . 9  |-  ( j  e.  ( 0..^ P )  ->  j  e.  CC )
172anim1i 592 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  e.  NN  /\  N  e.  ZZ ) )
1817ancomd 467 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( N  e.  ZZ  /\  P  e.  NN ) )
19 zmodcl 12690 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  P  e.  NN )  ->  ( N  mod  P
)  e.  NN0 )
20 nn0cn 11302 . . . . . . . . . . . 12  |-  ( ( N  mod  P )  e.  NN0  ->  ( N  mod  P )  e.  CC )
2118, 19, 203syl 18 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( N  mod  P )  e.  CC )
22213adant3 1081 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  ( N  mod  P )  e.  CC )
2322adantr 481 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( N  mod  P
)  e.  CC )
24 mulcom 10022 . . . . . . . . 9  |-  ( ( j  e.  CC  /\  ( N  mod  P )  e.  CC )  -> 
( j  x.  ( N  mod  P ) )  =  ( ( N  mod  P )  x.  j ) )
2516, 23, 24syl2anr 495 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( j  x.  ( N  mod  P
) )  =  ( ( N  mod  P
)  x.  j ) )
2625oveq2d 6666 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( I  +  ( j  x.  ( N  mod  P ) ) )  =  ( I  +  ( ( N  mod  P )  x.  j ) ) )
2726oveq1d 6665 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( j  x.  ( N  mod  P
) ) )  mod 
P )  =  ( ( I  +  ( ( N  mod  P
)  x.  j ) )  mod  P ) )
28 elfzoelz 12470 . . . . . . . . . 10  |-  ( I  e.  ( 0..^ P )  ->  I  e.  ZZ )
2928zred 11482 . . . . . . . . 9  |-  ( I  e.  ( 0..^ P )  ->  I  e.  RR )
3029adantl 482 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  I  e.  RR )
3130adantr 481 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  I  e.  RR )
32 zre 11381 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  RR )
33323ad2ant2 1083 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  N  e.  RR )
3433adantr 481 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  N  e.  RR )
3534adantr 481 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  N  e.  RR )
3615adantl 482 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  j  e.  ZZ )
372nnrpd 11870 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  RR+ )
38373ad2ant1 1082 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  P  e.  RR+ )
3938adantr 481 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  P  e.  RR+ )
4039adantr 481 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  P  e.  RR+ )
41 modaddmulmod 12737 . . . . . . 7  |-  ( ( ( I  e.  RR  /\  N  e.  RR  /\  j  e.  ZZ )  /\  P  e.  RR+ )  ->  ( ( I  +  ( ( N  mod  P )  x.  j ) )  mod  P )  =  ( ( I  +  ( N  x.  j ) )  mod 
P ) )
4231, 35, 36, 40, 41syl31anc 1329 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( ( N  mod  P )  x.  j ) )  mod 
P )  =  ( ( I  +  ( N  x.  j ) )  mod  P ) )
43 zcn 11382 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  CC )
4443adantr 481 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  j  e.  ( 0..^ P ) )  ->  N  e.  CC )
4516adantl 482 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  j  e.  ( 0..^ P ) )  -> 
j  e.  CC )
4644, 45mulcomd 10061 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  j  e.  ( 0..^ P ) )  -> 
( N  x.  j
)  =  ( j  x.  N ) )
4746ex 450 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
j  e.  ( 0..^ P )  ->  ( N  x.  j )  =  ( j  x.  N ) ) )
48473ad2ant2 1083 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
j  e.  ( 0..^ P )  ->  ( N  x.  j )  =  ( j  x.  N ) ) )
4948adantr 481 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( j  e.  ( 0..^ P )  -> 
( N  x.  j
)  =  ( j  x.  N ) ) )
5049imp 445 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( N  x.  j )  =  ( j  x.  N ) )
5150oveq2d 6666 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( I  +  ( N  x.  j
) )  =  ( I  +  ( j  x.  N ) ) )
5251oveq1d 6665 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( N  x.  j ) )  mod 
P )  =  ( ( I  +  ( j  x.  N ) )  mod  P ) )
5327, 42, 523eqtrrd 2661 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( j  x.  N ) )  mod 
P )  =  ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod  P ) )
5453eqeq1d 2624 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( ( I  +  ( j  x.  N ) )  mod  P )  =  0  <->  ( ( I  +  ( j  x.  ( N  mod  P
) ) )  mod 
P )  =  0 ) )
5554rexbidva 3049 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod 
P )  =  0 ) )
5614, 55mpbird 247 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
5756ex 450 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
I  e.  ( 0..^ P )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   NN0cn0 11292   ZZcz 11377   RR+crp 11832  ..^cfzo 12465    mod cmo 12668   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471
This theorem is referenced by:  cshwsidrepsw  15800
  Copyright terms: Public domain W3C validator