Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monotoddzz Structured version   Visualization version   GIF version

Theorem monotoddzz 37508
Description: A function (given implicitly) which is odd and monotonic on 0 is monotonic on . This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014.)
Hypotheses
Ref Expression
monotoddzz.1 ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 < 𝑦𝐸 < 𝐹))
monotoddzz.2 ((𝜑𝑥 ∈ ℤ) → 𝐸 ∈ ℝ)
monotoddzz.3 ((𝜑𝑦 ∈ ℤ) → 𝐺 = -𝐹)
monotoddzz.4 (𝑥 = 𝐴𝐸 = 𝐶)
monotoddzz.5 (𝑥 = 𝐵𝐸 = 𝐷)
monotoddzz.6 (𝑥 = 𝑦𝐸 = 𝐹)
monotoddzz.7 (𝑥 = -𝑦𝐸 = 𝐺)
Assertion
Ref Expression
monotoddzz ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐶 < 𝐷))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐸   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑦)   𝐺(𝑦)

Proof of Theorem monotoddzz
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . 5 𝑥(𝜑𝑎 ∈ ℤ)
2 nffvmpt1 6199 . . . . . 6 𝑥((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎)
32nfel1 2779 . . . . 5 𝑥((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) ∈ ℝ
41, 3nfim 1825 . . . 4 𝑥((𝜑𝑎 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) ∈ ℝ)
5 eleq1 2689 . . . . . 6 (𝑥 = 𝑎 → (𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ))
65anbi2d 740 . . . . 5 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
7 fveq2 6191 . . . . . 6 (𝑥 = 𝑎 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) = ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎))
87eleq1d 2686 . . . . 5 (𝑥 = 𝑎 → (((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) ∈ ℝ ↔ ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) ∈ ℝ))
96, 8imbi12d 334 . . . 4 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) ∈ ℝ) ↔ ((𝜑𝑎 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) ∈ ℝ)))
10 simpr 477 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
11 monotoddzz.2 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → 𝐸 ∈ ℝ)
12 eqid 2622 . . . . . . 7 (𝑥 ∈ ℤ ↦ 𝐸) = (𝑥 ∈ ℤ ↦ 𝐸)
1312fvmpt2 6291 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐸 ∈ ℝ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) = 𝐸)
1410, 11, 13syl2anc 693 . . . . 5 ((𝜑𝑥 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) = 𝐸)
1514, 11eqeltrd 2701 . . . 4 ((𝜑𝑥 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) ∈ ℝ)
164, 9, 15chvar 2262 . . 3 ((𝜑𝑎 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) ∈ ℝ)
17 eleq1 2689 . . . . . 6 (𝑦 = 𝑎 → (𝑦 ∈ ℤ ↔ 𝑎 ∈ ℤ))
1817anbi2d 740 . . . . 5 (𝑦 = 𝑎 → ((𝜑𝑦 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
19 negeq 10273 . . . . . . 7 (𝑦 = 𝑎 → -𝑦 = -𝑎)
2019fveq2d 6195 . . . . . 6 (𝑦 = 𝑎 → ((𝑥 ∈ ℤ ↦ 𝐸)‘-𝑦) = ((𝑥 ∈ ℤ ↦ 𝐸)‘-𝑎))
21 fveq2 6191 . . . . . . 7 (𝑦 = 𝑎 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎))
2221negeqd 10275 . . . . . 6 (𝑦 = 𝑎 → -((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = -((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎))
2320, 22eqeq12d 2637 . . . . 5 (𝑦 = 𝑎 → (((𝑥 ∈ ℤ ↦ 𝐸)‘-𝑦) = -((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) ↔ ((𝑥 ∈ ℤ ↦ 𝐸)‘-𝑎) = -((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎)))
2418, 23imbi12d 334 . . . 4 (𝑦 = 𝑎 → (((𝜑𝑦 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘-𝑦) = -((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦)) ↔ ((𝜑𝑎 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘-𝑎) = -((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎))))
25 monotoddzz.3 . . . . 5 ((𝜑𝑦 ∈ ℤ) → 𝐺 = -𝐹)
26 znegcl 11412 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
2726adantl 482 . . . . . 6 ((𝜑𝑦 ∈ ℤ) → -𝑦 ∈ ℤ)
28 negex 10279 . . . . . . . 8 -𝑦 ∈ V
29 eleq1 2689 . . . . . . . . . 10 (𝑥 = -𝑦 → (𝑥 ∈ ℤ ↔ -𝑦 ∈ ℤ))
3029anbi2d 740 . . . . . . . . 9 (𝑥 = -𝑦 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑 ∧ -𝑦 ∈ ℤ)))
31 monotoddzz.7 . . . . . . . . . 10 (𝑥 = -𝑦𝐸 = 𝐺)
3231eleq1d 2686 . . . . . . . . 9 (𝑥 = -𝑦 → (𝐸 ∈ ℝ ↔ 𝐺 ∈ ℝ))
3330, 32imbi12d 334 . . . . . . . 8 (𝑥 = -𝑦 → (((𝜑𝑥 ∈ ℤ) → 𝐸 ∈ ℝ) ↔ ((𝜑 ∧ -𝑦 ∈ ℤ) → 𝐺 ∈ ℝ)))
3428, 33, 11vtocl 3259 . . . . . . 7 ((𝜑 ∧ -𝑦 ∈ ℤ) → 𝐺 ∈ ℝ)
3526, 34sylan2 491 . . . . . 6 ((𝜑𝑦 ∈ ℤ) → 𝐺 ∈ ℝ)
3631, 12fvmptg 6280 . . . . . 6 ((-𝑦 ∈ ℤ ∧ 𝐺 ∈ ℝ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘-𝑦) = 𝐺)
3727, 35, 36syl2anc 693 . . . . 5 ((𝜑𝑦 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘-𝑦) = 𝐺)
38 simpr 477 . . . . . . 7 ((𝜑𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
39 eleq1 2689 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ ℤ ↔ 𝑦 ∈ ℤ))
4039anbi2d 740 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑𝑦 ∈ ℤ)))
41 monotoddzz.6 . . . . . . . . . 10 (𝑥 = 𝑦𝐸 = 𝐹)
4241eleq1d 2686 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐸 ∈ ℝ ↔ 𝐹 ∈ ℝ))
4340, 42imbi12d 334 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑥 ∈ ℤ) → 𝐸 ∈ ℝ) ↔ ((𝜑𝑦 ∈ ℤ) → 𝐹 ∈ ℝ)))
4443, 11chvarv 2263 . . . . . . 7 ((𝜑𝑦 ∈ ℤ) → 𝐹 ∈ ℝ)
4541, 12fvmptg 6280 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = 𝐹)
4638, 44, 45syl2anc 693 . . . . . 6 ((𝜑𝑦 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = 𝐹)
4746negeqd 10275 . . . . 5 ((𝜑𝑦 ∈ ℤ) → -((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = -𝐹)
4825, 37, 473eqtr4d 2666 . . . 4 ((𝜑𝑦 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘-𝑦) = -((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦))
4924, 48chvarv 2263 . . 3 ((𝜑𝑎 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘-𝑎) = -((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎))
50 nfv 1843 . . . . 5 𝑥(𝜑𝑎 ∈ ℕ0𝑏 ∈ ℕ0)
51 nfv 1843 . . . . . 6 𝑥 𝑎 < 𝑏
52 nfcv 2764 . . . . . . 7 𝑥 <
53 nffvmpt1 6199 . . . . . . 7 𝑥((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏)
542, 52, 53nfbr 4699 . . . . . 6 𝑥((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏)
5551, 54nfim 1825 . . . . 5 𝑥(𝑎 < 𝑏 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏))
5650, 55nfim 1825 . . . 4 𝑥((𝜑𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 < 𝑏 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏)))
57 eleq1 2689 . . . . . 6 (𝑥 = 𝑎 → (𝑥 ∈ ℕ0𝑎 ∈ ℕ0))
58573anbi2d 1404 . . . . 5 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℕ0𝑏 ∈ ℕ0) ↔ (𝜑𝑎 ∈ ℕ0𝑏 ∈ ℕ0)))
59 breq1 4656 . . . . . 6 (𝑥 = 𝑎 → (𝑥 < 𝑏𝑎 < 𝑏))
607breq1d 4663 . . . . . 6 (𝑥 = 𝑎 → (((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏) ↔ ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏)))
6159, 60imbi12d 334 . . . . 5 (𝑥 = 𝑎 → ((𝑥 < 𝑏 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏)) ↔ (𝑎 < 𝑏 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏))))
6258, 61imbi12d 334 . . . 4 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑥 < 𝑏 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏))) ↔ ((𝜑𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 < 𝑏 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏)))))
63 eleq1 2689 . . . . . . 7 (𝑦 = 𝑏 → (𝑦 ∈ ℕ0𝑏 ∈ ℕ0))
64633anbi3d 1405 . . . . . 6 (𝑦 = 𝑏 → ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ↔ (𝜑𝑥 ∈ ℕ0𝑏 ∈ ℕ0)))
65 breq2 4657 . . . . . . 7 (𝑦 = 𝑏 → (𝑥 < 𝑦𝑥 < 𝑏))
66 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑏 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏))
6766breq2d 4665 . . . . . . 7 (𝑦 = 𝑏 → (((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) ↔ ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏)))
6865, 67imbi12d 334 . . . . . 6 (𝑦 = 𝑏 → ((𝑥 < 𝑦 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦)) ↔ (𝑥 < 𝑏 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏))))
6964, 68imbi12d 334 . . . . 5 (𝑦 = 𝑏 → (((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦))) ↔ ((𝜑𝑥 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑥 < 𝑏 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏)))))
70 monotoddzz.1 . . . . . 6 ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 < 𝑦𝐸 < 𝐹))
71 nn0z 11400 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
7271, 14sylan2 491 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) = 𝐸)
73723adant3 1081 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) = 𝐸)
74 nfv 1843 . . . . . . . . . 10 𝑥(𝜑𝑦 ∈ ℕ0)
75 nffvmpt1 6199 . . . . . . . . . . 11 𝑥((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦)
7675nfeq1 2778 . . . . . . . . . 10 𝑥((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = 𝐹
7774, 76nfim 1825 . . . . . . . . 9 𝑥((𝜑𝑦 ∈ ℕ0) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = 𝐹)
78 eleq1 2689 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 ∈ ℕ0𝑦 ∈ ℕ0))
7978anbi2d 740 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑𝑥 ∈ ℕ0) ↔ (𝜑𝑦 ∈ ℕ0)))
80 fveq2 6191 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) = ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦))
8180, 41eqeq12d 2637 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) = 𝐸 ↔ ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = 𝐹))
8279, 81imbi12d 334 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝜑𝑥 ∈ ℕ0) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) = 𝐸) ↔ ((𝜑𝑦 ∈ ℕ0) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = 𝐹)))
8377, 82, 72chvar 2262 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = 𝐹)
84833adant2 1080 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) = 𝐹)
8573, 84breq12d 4666 . . . . . 6 ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦) ↔ 𝐸 < 𝐹))
8670, 85sylibrd 249 . . . . 5 ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑦)))
8769, 86chvarv 2263 . . . 4 ((𝜑𝑥 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑥 < 𝑏 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑥) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏)))
8856, 62, 87chvar 2262 . . 3 ((𝜑𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 < 𝑏 → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑎) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝑏)))
8916, 49, 88monotoddzzfi 37507 . 2 ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ((𝑥 ∈ ℤ ↦ 𝐸)‘𝐴) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝐵)))
90 simp2 1062 . . . 4 ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
91 eleq1 2689 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 ∈ ℤ ↔ 𝐴 ∈ ℤ))
9291anbi2d 740 . . . . . . . 8 (𝑥 = 𝐴 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑𝐴 ∈ ℤ)))
93 monotoddzz.4 . . . . . . . . 9 (𝑥 = 𝐴𝐸 = 𝐶)
9493eleq1d 2686 . . . . . . . 8 (𝑥 = 𝐴 → (𝐸 ∈ ℝ ↔ 𝐶 ∈ ℝ))
9592, 94imbi12d 334 . . . . . . 7 (𝑥 = 𝐴 → (((𝜑𝑥 ∈ ℤ) → 𝐸 ∈ ℝ) ↔ ((𝜑𝐴 ∈ ℤ) → 𝐶 ∈ ℝ)))
9695, 11vtoclg 3266 . . . . . 6 (𝐴 ∈ ℤ → ((𝜑𝐴 ∈ ℤ) → 𝐶 ∈ ℝ))
9796anabsi7 860 . . . . 5 ((𝜑𝐴 ∈ ℤ) → 𝐶 ∈ ℝ)
98973adant3 1081 . . . 4 ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐶 ∈ ℝ)
9993, 12fvmptg 6280 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℝ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝐴) = 𝐶)
10090, 98, 99syl2anc 693 . . 3 ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝐴) = 𝐶)
101 simp3 1063 . . . 4 ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
102 eleq1 2689 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥 ∈ ℤ ↔ 𝐵 ∈ ℤ))
103102anbi2d 740 . . . . . . . 8 (𝑥 = 𝐵 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑𝐵 ∈ ℤ)))
104 monotoddzz.5 . . . . . . . . 9 (𝑥 = 𝐵𝐸 = 𝐷)
105104eleq1d 2686 . . . . . . . 8 (𝑥 = 𝐵 → (𝐸 ∈ ℝ ↔ 𝐷 ∈ ℝ))
106103, 105imbi12d 334 . . . . . . 7 (𝑥 = 𝐵 → (((𝜑𝑥 ∈ ℤ) → 𝐸 ∈ ℝ) ↔ ((𝜑𝐵 ∈ ℤ) → 𝐷 ∈ ℝ)))
107106, 11vtoclg 3266 . . . . . 6 (𝐵 ∈ ℤ → ((𝜑𝐵 ∈ ℤ) → 𝐷 ∈ ℝ))
108107anabsi7 860 . . . . 5 ((𝜑𝐵 ∈ ℤ) → 𝐷 ∈ ℝ)
1091083adant2 1080 . . . 4 ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐷 ∈ ℝ)
110104, 12fvmptg 6280 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℝ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝐵) = 𝐷)
111101, 109, 110syl2anc 693 . . 3 ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ 𝐸)‘𝐵) = 𝐷)
112100, 111breq12d 4666 . 2 ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ 𝐸)‘𝐴) < ((𝑥 ∈ ℤ ↦ 𝐸)‘𝐵) ↔ 𝐶 < 𝐷))
11389, 112bitrd 268 1 ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐶 < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cmpt 4729  cfv 5888  cr 9935   < clt 10074  -cneg 10267  0cn0 11292  cz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378
This theorem is referenced by:  ltrmy  37519
  Copyright terms: Public domain W3C validator