| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > monotoddzz | Structured version Visualization version Unicode version | ||
| Description: A function (given
implicitly) which is odd and monotonic on |
| Ref | Expression |
|---|---|
| monotoddzz.1 |
|
| monotoddzz.2 |
|
| monotoddzz.3 |
|
| monotoddzz.4 |
|
| monotoddzz.5 |
|
| monotoddzz.6 |
|
| monotoddzz.7 |
|
| Ref | Expression |
|---|---|
| monotoddzz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . . 5
| |
| 2 | nffvmpt1 6199 |
. . . . . 6
| |
| 3 | 2 | nfel1 2779 |
. . . . 5
|
| 4 | 1, 3 | nfim 1825 |
. . . 4
|
| 5 | eleq1 2689 |
. . . . . 6
| |
| 6 | 5 | anbi2d 740 |
. . . . 5
|
| 7 | fveq2 6191 |
. . . . . 6
| |
| 8 | 7 | eleq1d 2686 |
. . . . 5
|
| 9 | 6, 8 | imbi12d 334 |
. . . 4
|
| 10 | simpr 477 |
. . . . . 6
| |
| 11 | monotoddzz.2 |
. . . . . 6
| |
| 12 | eqid 2622 |
. . . . . . 7
| |
| 13 | 12 | fvmpt2 6291 |
. . . . . 6
|
| 14 | 10, 11, 13 | syl2anc 693 |
. . . . 5
|
| 15 | 14, 11 | eqeltrd 2701 |
. . . 4
|
| 16 | 4, 9, 15 | chvar 2262 |
. . 3
|
| 17 | eleq1 2689 |
. . . . . 6
| |
| 18 | 17 | anbi2d 740 |
. . . . 5
|
| 19 | negeq 10273 |
. . . . . . 7
| |
| 20 | 19 | fveq2d 6195 |
. . . . . 6
|
| 21 | fveq2 6191 |
. . . . . . 7
| |
| 22 | 21 | negeqd 10275 |
. . . . . 6
|
| 23 | 20, 22 | eqeq12d 2637 |
. . . . 5
|
| 24 | 18, 23 | imbi12d 334 |
. . . 4
|
| 25 | monotoddzz.3 |
. . . . 5
| |
| 26 | znegcl 11412 |
. . . . . . 7
| |
| 27 | 26 | adantl 482 |
. . . . . 6
|
| 28 | negex 10279 |
. . . . . . . 8
| |
| 29 | eleq1 2689 |
. . . . . . . . . 10
| |
| 30 | 29 | anbi2d 740 |
. . . . . . . . 9
|
| 31 | monotoddzz.7 |
. . . . . . . . . 10
| |
| 32 | 31 | eleq1d 2686 |
. . . . . . . . 9
|
| 33 | 30, 32 | imbi12d 334 |
. . . . . . . 8
|
| 34 | 28, 33, 11 | vtocl 3259 |
. . . . . . 7
|
| 35 | 26, 34 | sylan2 491 |
. . . . . 6
|
| 36 | 31, 12 | fvmptg 6280 |
. . . . . 6
|
| 37 | 27, 35, 36 | syl2anc 693 |
. . . . 5
|
| 38 | simpr 477 |
. . . . . . 7
| |
| 39 | eleq1 2689 |
. . . . . . . . . 10
| |
| 40 | 39 | anbi2d 740 |
. . . . . . . . 9
|
| 41 | monotoddzz.6 |
. . . . . . . . . 10
| |
| 42 | 41 | eleq1d 2686 |
. . . . . . . . 9
|
| 43 | 40, 42 | imbi12d 334 |
. . . . . . . 8
|
| 44 | 43, 11 | chvarv 2263 |
. . . . . . 7
|
| 45 | 41, 12 | fvmptg 6280 |
. . . . . . 7
|
| 46 | 38, 44, 45 | syl2anc 693 |
. . . . . 6
|
| 47 | 46 | negeqd 10275 |
. . . . 5
|
| 48 | 25, 37, 47 | 3eqtr4d 2666 |
. . . 4
|
| 49 | 24, 48 | chvarv 2263 |
. . 3
|
| 50 | nfv 1843 |
. . . . 5
| |
| 51 | nfv 1843 |
. . . . . 6
| |
| 52 | nfcv 2764 |
. . . . . . 7
| |
| 53 | nffvmpt1 6199 |
. . . . . . 7
| |
| 54 | 2, 52, 53 | nfbr 4699 |
. . . . . 6
|
| 55 | 51, 54 | nfim 1825 |
. . . . 5
|
| 56 | 50, 55 | nfim 1825 |
. . . 4
|
| 57 | eleq1 2689 |
. . . . . 6
| |
| 58 | 57 | 3anbi2d 1404 |
. . . . 5
|
| 59 | breq1 4656 |
. . . . . 6
| |
| 60 | 7 | breq1d 4663 |
. . . . . 6
|
| 61 | 59, 60 | imbi12d 334 |
. . . . 5
|
| 62 | 58, 61 | imbi12d 334 |
. . . 4
|
| 63 | eleq1 2689 |
. . . . . . 7
| |
| 64 | 63 | 3anbi3d 1405 |
. . . . . 6
|
| 65 | breq2 4657 |
. . . . . . 7
| |
| 66 | fveq2 6191 |
. . . . . . . 8
| |
| 67 | 66 | breq2d 4665 |
. . . . . . 7
|
| 68 | 65, 67 | imbi12d 334 |
. . . . . 6
|
| 69 | 64, 68 | imbi12d 334 |
. . . . 5
|
| 70 | monotoddzz.1 |
. . . . . 6
| |
| 71 | nn0z 11400 |
. . . . . . . . 9
| |
| 72 | 71, 14 | sylan2 491 |
. . . . . . . 8
|
| 73 | 72 | 3adant3 1081 |
. . . . . . 7
|
| 74 | nfv 1843 |
. . . . . . . . . 10
| |
| 75 | nffvmpt1 6199 |
. . . . . . . . . . 11
| |
| 76 | 75 | nfeq1 2778 |
. . . . . . . . . 10
|
| 77 | 74, 76 | nfim 1825 |
. . . . . . . . 9
|
| 78 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 79 | 78 | anbi2d 740 |
. . . . . . . . . 10
|
| 80 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 81 | 80, 41 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 82 | 79, 81 | imbi12d 334 |
. . . . . . . . 9
|
| 83 | 77, 82, 72 | chvar 2262 |
. . . . . . . 8
|
| 84 | 83 | 3adant2 1080 |
. . . . . . 7
|
| 85 | 73, 84 | breq12d 4666 |
. . . . . 6
|
| 86 | 70, 85 | sylibrd 249 |
. . . . 5
|
| 87 | 69, 86 | chvarv 2263 |
. . . 4
|
| 88 | 56, 62, 87 | chvar 2262 |
. . 3
|
| 89 | 16, 49, 88 | monotoddzzfi 37507 |
. 2
|
| 90 | simp2 1062 |
. . . 4
| |
| 91 | eleq1 2689 |
. . . . . . . . 9
| |
| 92 | 91 | anbi2d 740 |
. . . . . . . 8
|
| 93 | monotoddzz.4 |
. . . . . . . . 9
| |
| 94 | 93 | eleq1d 2686 |
. . . . . . . 8
|
| 95 | 92, 94 | imbi12d 334 |
. . . . . . 7
|
| 96 | 95, 11 | vtoclg 3266 |
. . . . . 6
|
| 97 | 96 | anabsi7 860 |
. . . . 5
|
| 98 | 97 | 3adant3 1081 |
. . . 4
|
| 99 | 93, 12 | fvmptg 6280 |
. . . 4
|
| 100 | 90, 98, 99 | syl2anc 693 |
. . 3
|
| 101 | simp3 1063 |
. . . 4
| |
| 102 | eleq1 2689 |
. . . . . . . . 9
| |
| 103 | 102 | anbi2d 740 |
. . . . . . . 8
|
| 104 | monotoddzz.5 |
. . . . . . . . 9
| |
| 105 | 104 | eleq1d 2686 |
. . . . . . . 8
|
| 106 | 103, 105 | imbi12d 334 |
. . . . . . 7
|
| 107 | 106, 11 | vtoclg 3266 |
. . . . . 6
|
| 108 | 107 | anabsi7 860 |
. . . . 5
|
| 109 | 108 | 3adant2 1080 |
. . . 4
|
| 110 | 104, 12 | fvmptg 6280 |
. . . 4
|
| 111 | 101, 109, 110 | syl2anc 693 |
. . 3
|
| 112 | 100, 111 | breq12d 4666 |
. 2
|
| 113 | 89, 112 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 |
| This theorem is referenced by: ltrmy 37519 |
| Copyright terms: Public domain | W3C validator |