Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddcomabszz Structured version   Visualization version   GIF version

Theorem oddcomabszz 37509
Description: An odd function which takes nonnegative values on nonnegative arguments commutes with abs. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Hypotheses
Ref Expression
oddcomabszz.1 ((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
oddcomabszz.2 ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴)
oddcomabszz.3 ((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵)
oddcomabszz.4 (𝑥 = 𝑦𝐴 = 𝐵)
oddcomabszz.5 (𝑥 = -𝑦𝐴 = 𝐶)
oddcomabszz.6 (𝑥 = 𝐷𝐴 = 𝐸)
oddcomabszz.7 (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹)
Assertion
Ref Expression
oddcomabszz ((𝜑𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷,𝑦   𝑥,𝐸   𝑥,𝐹   𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑦)   𝐸(𝑦)   𝐹(𝑦)

Proof of Theorem oddcomabszz
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . . 6 (𝑎 = 𝐷 → (𝑎 ∈ ℤ ↔ 𝐷 ∈ ℤ))
21anbi2d 740 . . . . 5 (𝑎 = 𝐷 → ((𝜑𝑎 ∈ ℤ) ↔ (𝜑𝐷 ∈ ℤ)))
3 csbeq1 3536 . . . . . . 7 (𝑎 = 𝐷𝑎 / 𝑥𝐴 = 𝐷 / 𝑥𝐴)
43fveq2d 6195 . . . . . 6 (𝑎 = 𝐷 → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝐷 / 𝑥𝐴))
5 fveq2 6191 . . . . . . 7 (𝑎 = 𝐷 → (abs‘𝑎) = (abs‘𝐷))
65csbeq1d 3540 . . . . . 6 (𝑎 = 𝐷(abs‘𝑎) / 𝑥𝐴 = (abs‘𝐷) / 𝑥𝐴)
74, 6eqeq12d 2637 . . . . 5 (𝑎 = 𝐷 → ((abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴 ↔ (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴))
82, 7imbi12d 334 . . . 4 (𝑎 = 𝐷 → (((𝜑𝑎 ∈ ℤ) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴) ↔ ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴)))
9 nfv 1843 . . . . . . . . . 10 𝑥(𝜑𝑎 ∈ ℤ)
10 nfcsb1v 3549 . . . . . . . . . . 11 𝑥𝑎 / 𝑥𝐴
1110nfel1 2779 . . . . . . . . . 10 𝑥𝑎 / 𝑥𝐴 ∈ ℝ
129, 11nfim 1825 . . . . . . . . 9 𝑥((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)
13 eleq1 2689 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ))
1413anbi2d 740 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
15 csbeq1a 3542 . . . . . . . . . . 11 (𝑥 = 𝑎𝐴 = 𝑎 / 𝑥𝐴)
1615eleq1d 2686 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐴 ∈ ℝ ↔ 𝑎 / 𝑥𝐴 ∈ ℝ))
1714, 16imbi12d 334 . . . . . . . . 9 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)))
18 oddcomabszz.1 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
1912, 17, 18chvar 2262 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ) → 𝑎 / 𝑥𝐴 ∈ ℝ)
2019adantr 481 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 𝑎 / 𝑥𝐴 ∈ ℝ)
21 nfv 1843 . . . . . . . . . 10 𝑥(𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎)
22 nfcv 2764 . . . . . . . . . . 11 𝑥0
23 nfcv 2764 . . . . . . . . . . 11 𝑥
2422, 23, 10nfbr 4699 . . . . . . . . . 10 𝑥0 ≤ 𝑎 / 𝑥𝐴
2521, 24nfim 1825 . . . . . . . . 9 𝑥((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
26 breq2 4657 . . . . . . . . . . 11 (𝑥 = 𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑎))
2713, 263anbi23d 1402 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) ↔ (𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎)))
2815breq2d 4665 . . . . . . . . . 10 (𝑥 = 𝑎 → (0 ≤ 𝐴 ↔ 0 ≤ 𝑎 / 𝑥𝐴))
2927, 28imbi12d 334 . . . . . . . . 9 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) ↔ ((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)))
30 oddcomabszz.2 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴)
3125, 29, 30chvar 2262 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
32313expa 1265 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 0 ≤ 𝑎 / 𝑥𝐴)
3320, 32absidd 14161 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎 / 𝑥𝐴) = 𝑎 / 𝑥𝐴)
34 zre 11381 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
3534ad2antlr 763 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℝ)
36 absid 14036 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
3735, 36sylancom 701 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
3837csbeq1d 3540 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎) / 𝑥𝐴 = 𝑎 / 𝑥𝐴)
3933, 38eqtr4d 2659 . . . . 5 (((𝜑𝑎 ∈ ℤ) ∧ 0 ≤ 𝑎) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
40 nfv 1843 . . . . . . . 8 𝑦((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
41 eleq1 2689 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦 ∈ ℤ ↔ 𝑎 ∈ ℤ))
4241anbi2d 740 . . . . . . . . 9 (𝑦 = 𝑎 → ((𝜑𝑦 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
43 negex 10279 . . . . . . . . . . . 12 -𝑦 ∈ V
44 oddcomabszz.5 . . . . . . . . . . . 12 (𝑥 = -𝑦𝐴 = 𝐶)
4543, 44csbie 3559 . . . . . . . . . . 11 -𝑦 / 𝑥𝐴 = 𝐶
46 negeq 10273 . . . . . . . . . . . 12 (𝑦 = 𝑎 → -𝑦 = -𝑎)
4746csbeq1d 3540 . . . . . . . . . . 11 (𝑦 = 𝑎-𝑦 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
4845, 47syl5eqr 2670 . . . . . . . . . 10 (𝑦 = 𝑎𝐶 = -𝑎 / 𝑥𝐴)
49 vex 3203 . . . . . . . . . . . . 13 𝑦 ∈ V
50 oddcomabszz.4 . . . . . . . . . . . . 13 (𝑥 = 𝑦𝐴 = 𝐵)
5149, 50csbie 3559 . . . . . . . . . . . 12 𝑦 / 𝑥𝐴 = 𝐵
52 csbeq1 3536 . . . . . . . . . . . 12 (𝑦 = 𝑎𝑦 / 𝑥𝐴 = 𝑎 / 𝑥𝐴)
5351, 52syl5eqr 2670 . . . . . . . . . . 11 (𝑦 = 𝑎𝐵 = 𝑎 / 𝑥𝐴)
5453negeqd 10275 . . . . . . . . . 10 (𝑦 = 𝑎 → -𝐵 = -𝑎 / 𝑥𝐴)
5548, 54eqeq12d 2637 . . . . . . . . 9 (𝑦 = 𝑎 → (𝐶 = -𝐵-𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴))
5642, 55imbi12d 334 . . . . . . . 8 (𝑦 = 𝑎 → (((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵) ↔ ((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)))
57 oddcomabszz.3 . . . . . . . 8 ((𝜑𝑦 ∈ ℤ) → 𝐶 = -𝐵)
5840, 56, 57chvar 2262 . . . . . . 7 ((𝜑𝑎 ∈ ℤ) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
5958adantr 481 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → -𝑎 / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
6034ad2antlr 763 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℝ)
61 absnid 14038 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑎 ≤ 0) → (abs‘𝑎) = -𝑎)
6260, 61sylancom 701 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎) = -𝑎)
6362csbeq1d 3540 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎) / 𝑥𝐴 = -𝑎 / 𝑥𝐴)
6419adantr 481 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 / 𝑥𝐴 ∈ ℝ)
65 znegcl 11412 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 ∈ ℤ)
66 nfv 1843 . . . . . . . . . . . . . 14 𝑥(𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎)
67 nfcsb1v 3549 . . . . . . . . . . . . . . 15 𝑥-𝑎 / 𝑥𝐴
6822, 23, 67nfbr 4699 . . . . . . . . . . . . . 14 𝑥0 ≤ -𝑎 / 𝑥𝐴
6966, 68nfim 1825 . . . . . . . . . . . . 13 𝑥((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)
70 negex 10279 . . . . . . . . . . . . 13 -𝑎 ∈ V
71 eleq1 2689 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎 → (𝑥 ∈ ℤ ↔ -𝑎 ∈ ℤ))
72 breq2 4657 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ -𝑎))
7371, 723anbi23d 1402 . . . . . . . . . . . . . 14 (𝑥 = -𝑎 → ((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) ↔ (𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎)))
74 csbeq1a 3542 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎𝐴 = -𝑎 / 𝑥𝐴)
7574breq2d 4665 . . . . . . . . . . . . . 14 (𝑥 = -𝑎 → (0 ≤ 𝐴 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
7673, 75imbi12d 334 . . . . . . . . . . . . 13 (𝑥 = -𝑎 → (((𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → 0 ≤ 𝐴) ↔ ((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)))
7769, 70, 76, 30vtoclf 3258 . . . . . . . . . . . 12 ((𝜑 ∧ -𝑎 ∈ ℤ ∧ 0 ≤ -𝑎) → 0 ≤ -𝑎 / 𝑥𝐴)
78773expia 1267 . . . . . . . . . . 11 ((𝜑 ∧ -𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
7965, 78sylan2 491 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
8058breq2d 4665 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 / 𝑥𝐴 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
8179, 80sylibd 229 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (0 ≤ -𝑎 → 0 ≤ -𝑎 / 𝑥𝐴))
8234adantl 482 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
8382le0neg1d 10599 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (𝑎 ≤ 0 ↔ 0 ≤ -𝑎))
8419le0neg1d 10599 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ) → (𝑎 / 𝑥𝐴 ≤ 0 ↔ 0 ≤ -𝑎 / 𝑥𝐴))
8581, 83, 843imtr4d 283 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ) → (𝑎 ≤ 0 → 𝑎 / 𝑥𝐴 ≤ 0))
8685imp 445 . . . . . . 7 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → 𝑎 / 𝑥𝐴 ≤ 0)
8764, 86absnidd 14152 . . . . . 6 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎 / 𝑥𝐴) = -𝑎 / 𝑥𝐴)
8859, 63, 873eqtr4rd 2667 . . . . 5 (((𝜑𝑎 ∈ ℤ) ∧ 𝑎 ≤ 0) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
89 0re 10040 . . . . . . 7 0 ∈ ℝ
90 letric 10137 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎𝑎 ≤ 0))
9189, 34, 90sylancr 695 . . . . . 6 (𝑎 ∈ ℤ → (0 ≤ 𝑎𝑎 ≤ 0))
9291adantl 482 . . . . 5 ((𝜑𝑎 ∈ ℤ) → (0 ≤ 𝑎𝑎 ≤ 0))
9339, 88, 92mpjaodan 827 . . . 4 ((𝜑𝑎 ∈ ℤ) → (abs‘𝑎 / 𝑥𝐴) = (abs‘𝑎) / 𝑥𝐴)
948, 93vtoclg 3266 . . 3 (𝐷 ∈ ℤ → ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴))
9594anabsi7 860 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐷) / 𝑥𝐴)
96 nfcvd 2765 . . . . 5 (𝐷 ∈ ℤ → 𝑥𝐸)
97 oddcomabszz.6 . . . . 5 (𝑥 = 𝐷𝐴 = 𝐸)
9896, 97csbiegf 3557 . . . 4 (𝐷 ∈ ℤ → 𝐷 / 𝑥𝐴 = 𝐸)
9998fveq2d 6195 . . 3 (𝐷 ∈ ℤ → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐸))
10099adantl 482 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷 / 𝑥𝐴) = (abs‘𝐸))
101 fvex 6201 . . . 4 (abs‘𝐷) ∈ V
102 oddcomabszz.7 . . . 4 (𝑥 = (abs‘𝐷) → 𝐴 = 𝐹)
103101, 102csbie 3559 . . 3 (abs‘𝐷) / 𝑥𝐴 = 𝐹
104103a1i 11 . 2 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐷) / 𝑥𝐴 = 𝐹)
10595, 100, 1043eqtr3d 2664 1 ((𝜑𝐷 ∈ ℤ) → (abs‘𝐸) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  csb 3533   class class class wbr 4653  cfv 5888  cr 9935  0cc0 9936  cle 10075  -cneg 10267  cz 11377  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  rmyabs  37525
  Copyright terms: Public domain W3C validator