| Step | Hyp | Ref
| Expression |
| 1 | | mplsubglem.s |
. . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | mplsubglem.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 3 | | mpllsslem.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 4 | 1, 2, 3 | psrsca 19389 |
. 2
⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) |
| 5 | | eqidd 2623 |
. 2
⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) |
| 6 | | mplsubglem.b |
. . 3
⊢ 𝐵 = (Base‘𝑆) |
| 7 | 6 | a1i 11 |
. 2
⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
| 8 | | eqidd 2623 |
. 2
⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑆)) |
| 9 | | eqidd 2623 |
. 2
⊢ (𝜑 → (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆)) |
| 10 | | eqidd 2623 |
. 2
⊢ (𝜑 → (LSubSp‘𝑆) = (LSubSp‘𝑆)) |
| 11 | | mplsubglem.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
| 12 | | mplsubglem.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 13 | | mplsubglem.0 |
. . . 4
⊢ (𝜑 → ∅ ∈ 𝐴) |
| 14 | | mplsubglem.a |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∪ 𝑦) ∈ 𝐴) |
| 15 | | mplsubglem.y |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐴) |
| 16 | | mplsubglem.u |
. . . 4
⊢ (𝜑 → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
| 17 | | ringgrp 18552 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 18 | 3, 17 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 19 | 1, 6, 11, 12, 2, 13, 14, 15, 16, 18 | mplsubglem 19434 |
. . 3
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) |
| 20 | 6 | subgss 17595 |
. . 3
⊢ (𝑈 ∈ (SubGrp‘𝑆) → 𝑈 ⊆ 𝐵) |
| 21 | 19, 20 | syl 17 |
. 2
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| 22 | | eqid 2622 |
. . . 4
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 23 | 22 | subg0cl 17602 |
. . 3
⊢ (𝑈 ∈ (SubGrp‘𝑆) →
(0g‘𝑆)
∈ 𝑈) |
| 24 | | ne0i 3921 |
. . 3
⊢
((0g‘𝑆) ∈ 𝑈 → 𝑈 ≠ ∅) |
| 25 | 19, 23, 24 | 3syl 18 |
. 2
⊢ (𝜑 → 𝑈 ≠ ∅) |
| 26 | 19 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → 𝑈 ∈ (SubGrp‘𝑆)) |
| 27 | | eqid 2622 |
. . . . . 6
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
| 28 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 29 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑅 ∈ Ring) |
| 30 | | simprl 794 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑢 ∈ (Base‘𝑅)) |
| 31 | | simprr 796 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣 ∈ 𝑈) |
| 32 | 16 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
| 33 | 32 | eleq2d 2687 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝑈 ↔ 𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
| 34 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 )) |
| 35 | 34 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴)) |
| 36 | 35 | elrab 3363 |
. . . . . . . . 9
⊢ (𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) |
| 37 | 33, 36 | syl6bb 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝑈 ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))) |
| 38 | 31, 37 | mpbid 222 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) |
| 39 | 38 | simpld 475 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣 ∈ 𝐵) |
| 40 | 1, 27, 28, 6, 29, 30, 39 | psrvscacl 19393 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵) |
| 41 | | ovex 6678 |
. . . . . . 7
⊢ ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈
V |
| 42 | 41 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈
V) |
| 43 | 38 | simprd 479 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 supp 0 ) ∈ 𝐴) |
| 44 | 15 | expr 643 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
| 45 | 44 | alrimiv 1855 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
| 46 | 45 | ralrimiva 2966 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
| 47 | 46 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
| 48 | | sseq2 3627 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑣 supp 0 ) → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ (𝑣 supp 0 ))) |
| 49 | 48 | imbi1d 331 |
. . . . . . . . 9
⊢ (𝑥 = (𝑣 supp 0 ) → ((𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ (𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴))) |
| 50 | 49 | albidv 1849 |
. . . . . . . 8
⊢ (𝑥 = (𝑣 supp 0 ) → (∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴))) |
| 51 | 50 | rspcv 3305 |
. . . . . . 7
⊢ ((𝑣 supp 0 ) ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴))) |
| 52 | 43, 47, 51 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴)) |
| 53 | 1, 28, 12, 6, 40 | psrelbas 19379 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣):𝐷⟶(Base‘𝑅)) |
| 54 | | eqid 2622 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 55 | 30 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑢 ∈ (Base‘𝑅)) |
| 56 | 39 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑣 ∈ 𝐵) |
| 57 | | eldifi 3732 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )) → 𝑘 ∈ 𝐷) |
| 58 | 57 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑘 ∈ 𝐷) |
| 59 | 1, 27, 28, 6, 54, 12, 55, 56, 58 | psrvscaval 19392 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢(
·𝑠 ‘𝑆)𝑣)‘𝑘) = (𝑢(.r‘𝑅)(𝑣‘𝑘))) |
| 60 | 1, 28, 12, 6, 39 | psrelbas 19379 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝑣:𝐷⟶(Base‘𝑅)) |
| 61 | | ssid 3624 |
. . . . . . . . . . 11
⊢ (𝑣 supp 0 ) ⊆ (𝑣 supp 0 ) |
| 62 | 61 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 )) |
| 63 | | ovex 6678 |
. . . . . . . . . . . 12
⊢
(ℕ0 ↑𝑚 𝐼) ∈ V |
| 64 | 12, 63 | rabex2 4815 |
. . . . . . . . . . 11
⊢ 𝐷 ∈ V |
| 65 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 𝐷 ∈ V) |
| 66 | | fvex 6201 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) ∈ V |
| 67 | 11, 66 | eqeltri 2697 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
| 68 | 67 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → 0 ∈ V) |
| 69 | 60, 62, 65, 68 | suppssr 7326 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣‘𝑘) = 0 ) |
| 70 | 69 | oveq2d 6666 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r‘𝑅)(𝑣‘𝑘)) = (𝑢(.r‘𝑅) 0 )) |
| 71 | 28, 54, 11 | ringrz 18588 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑢(.r‘𝑅) 0 ) = 0 ) |
| 72 | 3, 30, 71 | syl2an2r 876 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢(.r‘𝑅) 0 ) = 0 ) |
| 73 | 72 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r‘𝑅) 0 ) = 0 ) |
| 74 | 59, 70, 73 | 3eqtrd 2660 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢(
·𝑠 ‘𝑆)𝑣)‘𝑘) = 0 ) |
| 75 | 53, 74 | suppss 7325 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 )) |
| 76 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → (𝑦 ⊆ (𝑣 supp 0 ) ↔ ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ))) |
| 77 | | eleq1 2689 |
. . . . . . . 8
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → (𝑦 ∈ 𝐴 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
| 78 | 76, 77 | imbi12d 334 |
. . . . . . 7
⊢ (𝑦 = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴) ↔ (((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
| 79 | 78 | spcgv 3293 |
. . . . . 6
⊢ (((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ V →
(∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦 ∈ 𝐴) → (((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢(
·𝑠 ‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
| 80 | 42, 52, 75, 79 | syl3c 66 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴) |
| 81 | 32 | eleq2d 2687 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ↔ (𝑢( ·𝑠
‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
| 82 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑔 = (𝑢( ·𝑠
‘𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 )) |
| 83 | 82 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑔 = (𝑢( ·𝑠
‘𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
| 84 | 83 | elrab 3363 |
. . . . . 6
⊢ ((𝑢(
·𝑠 ‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
| 85 | 81, 84 | syl6bb 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠
‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
| 86 | 40, 80, 85 | mpbir2and 957 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈) |
| 87 | 86 | 3adantr3 1222 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈) |
| 88 | | simpr3 1069 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → 𝑤 ∈ 𝑈) |
| 89 | | eqid 2622 |
. . . 4
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 90 | 89 | subgcl 17604 |
. . 3
⊢ ((𝑈 ∈ (SubGrp‘𝑆) ∧ (𝑢( ·𝑠
‘𝑆)𝑣) ∈ 𝑈 ∧ 𝑤 ∈ 𝑈) → ((𝑢( ·𝑠
‘𝑆)𝑣)(+g‘𝑆)𝑤) ∈ 𝑈) |
| 91 | 26, 87, 88, 90 | syl3anc 1326 |
. 2
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈)) → ((𝑢( ·𝑠
‘𝑆)𝑣)(+g‘𝑆)𝑤) ∈ 𝑈) |
| 92 | 4, 5, 7, 8, 9, 10,
21, 25, 91 | islssd 18936 |
1
⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) |