Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubcv Structured version   Visualization version   GIF version

Theorem mrsubcv 31407
Description: The value of a substituted singleton. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubcv ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))

Proof of Theorem mrsubcv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp3 1063 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑋 ∈ (𝐶𝑉))
21s1cld 13383 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“𝑋”⟩ ∈ Word (𝐶𝑉))
3 elun 3753 . . . . . . 7 (𝑋 ∈ (𝐶𝑉) ↔ (𝑋𝐶𝑋𝑉))
4 elfvex 6221 . . . . . . . . 9 (𝑋 ∈ (mCN‘𝑇) → 𝑇 ∈ V)
5 mrsubffval.c . . . . . . . . 9 𝐶 = (mCN‘𝑇)
64, 5eleq2s 2719 . . . . . . . 8 (𝑋𝐶𝑇 ∈ V)
7 elfvex 6221 . . . . . . . . 9 (𝑋 ∈ (mVR‘𝑇) → 𝑇 ∈ V)
8 mrsubffval.v . . . . . . . . 9 𝑉 = (mVR‘𝑇)
97, 8eleq2s 2719 . . . . . . . 8 (𝑋𝑉𝑇 ∈ V)
106, 9jaoi 394 . . . . . . 7 ((𝑋𝐶𝑋𝑉) → 𝑇 ∈ V)
113, 10sylbi 207 . . . . . 6 (𝑋 ∈ (𝐶𝑉) → 𝑇 ∈ V)
12113ad2ant3 1084 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑇 ∈ V)
13 mrsubffval.r . . . . . 6 𝑅 = (mREx‘𝑇)
145, 8, 13mrexval 31398 . . . . 5 (𝑇 ∈ V → 𝑅 = Word (𝐶𝑉))
1512, 14syl 17 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑅 = Word (𝐶𝑉))
162, 15eleqtrrd 2704 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“𝑋”⟩ ∈ 𝑅)
17 mrsubffval.s . . . 4 𝑆 = (mRSubst‘𝑇)
18 eqid 2622 . . . 4 (freeMnd‘(𝐶𝑉)) = (freeMnd‘(𝐶𝑉))
195, 8, 13, 17, 18mrsubval 31406 . . 3 ((𝐹:𝐴𝑅𝐴𝑉 ∧ ⟨“𝑋”⟩ ∈ 𝑅) → ((𝑆𝐹)‘⟨“𝑋”⟩) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)))
2016, 19syld3an3 1371 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)))
21 simpl1 1064 . . . . . . . . 9 (((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝐹:𝐴𝑅)
2221ffvelrnda 6359 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ 𝑅)
2315ad2antrr 762 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → 𝑅 = Word (𝐶𝑉))
2422, 23eleqtrd 2703 . . . . . . 7 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ Word (𝐶𝑉))
25 simplr 792 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝐴) → 𝑣 ∈ (𝐶𝑉))
2625s1cld 13383 . . . . . . 7 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝐴) → ⟨“𝑣”⟩ ∈ Word (𝐶𝑉))
2724, 26ifclda 4120 . . . . . 6 (((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) → if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩) ∈ Word (𝐶𝑉))
28 eqid 2622 . . . . . 6 (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))
2927, 28fmptd 6385 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉))
30 s1co 13579 . . . . 5 ((𝑋 ∈ (𝐶𝑉) ∧ (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩)
311, 29, 30syl2anc 693 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩)
32 eleq1 2689 . . . . . . . 8 (𝑣 = 𝑋 → (𝑣𝐴𝑋𝐴))
33 fveq2 6191 . . . . . . . 8 (𝑣 = 𝑋 → (𝐹𝑣) = (𝐹𝑋))
34 s1eq 13380 . . . . . . . 8 (𝑣 = 𝑋 → ⟨“𝑣”⟩ = ⟨“𝑋”⟩)
3532, 33, 34ifbieq12d 4113 . . . . . . 7 (𝑣 = 𝑋 → if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
36 fvex 6201 . . . . . . . 8 (𝐹𝑋) ∈ V
37 s1cli 13384 . . . . . . . . 9 ⟨“𝑋”⟩ ∈ Word V
3837elexi 3213 . . . . . . . 8 ⟨“𝑋”⟩ ∈ V
3936, 38ifex 4156 . . . . . . 7 if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ V
4035, 28, 39fvmpt 6282 . . . . . 6 (𝑋 ∈ (𝐶𝑉) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
41403ad2ant3 1084 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
4241s1eqd 13381 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩ = ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩)
4331, 42eqtrd 2656 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩)
4443oveq2d 6666 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)) = ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩))
4529, 1ffvelrnd 6360 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) ∈ Word (𝐶𝑉))
4641, 45eqeltrrd 2702 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ Word (𝐶𝑉))
47 fvex 6201 . . . . . . . 8 (mCN‘𝑇) ∈ V
485, 47eqeltri 2697 . . . . . . 7 𝐶 ∈ V
49 fvex 6201 . . . . . . . 8 (mVR‘𝑇) ∈ V
508, 49eqeltri 2697 . . . . . . 7 𝑉 ∈ V
5148, 50unex 6956 . . . . . 6 (𝐶𝑉) ∈ V
52 eqid 2622 . . . . . . 7 (Base‘(freeMnd‘(𝐶𝑉))) = (Base‘(freeMnd‘(𝐶𝑉)))
5318, 52frmdbas 17389 . . . . . 6 ((𝐶𝑉) ∈ V → (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉))
5451, 53ax-mp 5 . . . . 5 (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉)
5554eqcomi 2631 . . . 4 Word (𝐶𝑉) = (Base‘(freeMnd‘(𝐶𝑉)))
5655gsumws1 17376 . . 3 (if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ Word (𝐶𝑉) → ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
5746, 56syl 17 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
5820, 44, 573eqtrd 2660 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  wss 3574  ifcif 4086  cmpt 4729  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  Word cword 13291  ⟨“cs1 13294  Basecbs 15857   Σg cgsu 16101  freeMndcfrmd 17384  mCNcmcn 31357  mVRcmvar 31358  mRExcmrex 31363  mRSubstcmrsub 31367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-s1 13302  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-0g 16102  df-gsum 16103  df-frmd 17386  df-mrex 31383  df-mrsub 31387
This theorem is referenced by:  mrsubvr  31408  mrsubcn  31416
  Copyright terms: Public domain W3C validator