| Step | Hyp | Ref
| Expression |
| 1 | | mulgnndir.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | mulgnndir.p |
. . . . . 6
⊢ + =
(+g‘𝐺) |
| 3 | 1, 2 | mndcl 17301 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 4 | 3 | 3expb 1266 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 5 | 4 | adantlr 751 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 6 | 1, 2 | mndass 17302 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 7 | 6 | adantlr 751 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 8 | | simpr2 1068 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℕ) |
| 9 | | nnuz 11723 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
| 10 | 8, 9 | syl6eleq 2711 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈
(ℤ≥‘1)) |
| 11 | | simpr1 1067 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℕ) |
| 12 | 11 | nnzd 11481 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℤ) |
| 13 | | eluzadd 11716 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘1) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ≥‘(1 +
𝑀))) |
| 14 | 10, 12, 13 | syl2anc 693 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 + 𝑀) ∈ (ℤ≥‘(1 +
𝑀))) |
| 15 | 11 | nncnd 11036 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℂ) |
| 16 | 8 | nncnd 11036 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℂ) |
| 17 | 15, 16 | addcomd 10238 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) = (𝑁 + 𝑀)) |
| 18 | | ax-1cn 9994 |
. . . . . 6
⊢ 1 ∈
ℂ |
| 19 | | addcom 10222 |
. . . . . 6
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑀 + 1) =
(1 + 𝑀)) |
| 20 | 15, 18, 19 | sylancl 694 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 1) = (1 + 𝑀)) |
| 21 | 20 | fveq2d 6195 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) →
(ℤ≥‘(𝑀 + 1)) = (ℤ≥‘(1 +
𝑀))) |
| 22 | 14, 17, 21 | 3eltr4d 2716 |
. . 3
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝑀 + 1))) |
| 23 | 11, 9 | syl6eleq 2711 |
. . 3
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈
(ℤ≥‘1)) |
| 24 | | simpr3 1069 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
| 25 | | elfznn 12370 |
. . . . 5
⊢ (𝑥 ∈ (1...(𝑀 + 𝑁)) → 𝑥 ∈ ℕ) |
| 26 | | fvconst2g 6467 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑥 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑥) = 𝑋) |
| 27 | 24, 25, 26 | syl2an 494 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → ((ℕ × {𝑋})‘𝑥) = 𝑋) |
| 28 | 24 | adantr 481 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → 𝑋 ∈ 𝐵) |
| 29 | 27, 28 | eqeltrd 2701 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → ((ℕ × {𝑋})‘𝑥) ∈ 𝐵) |
| 30 | 5, 7, 22, 23, 29 | seqsplit 12834 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))) |
| 31 | | nnaddcl 11042 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
| 32 | 11, 8, 31 | syl2anc 693 |
. . 3
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) ∈ ℕ) |
| 33 | | mulgnndir.t |
. . . 4
⊢ · =
(.g‘𝐺) |
| 34 | | eqid 2622 |
. . . 4
⊢ seq1(
+ ,
(ℕ × {𝑋})) =
seq1( + ,
(ℕ × {𝑋})) |
| 35 | 1, 2, 33, 34 | mulgnn 17547 |
. . 3
⊢ (((𝑀 + 𝑁) ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) |
| 36 | 32, 24, 35 | syl2anc 693 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) |
| 37 | 1, 2, 33, 34 | mulgnn 17547 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) |
| 38 | 11, 24, 37 | syl2anc 693 |
. . 3
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) |
| 39 | | elfznn 12370 |
. . . . . . 7
⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) |
| 40 | 24, 39, 26 | syl2an 494 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋) |
| 41 | 24 | adantr 481 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
| 42 | | nnaddcl 11042 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑥 + 𝑀) ∈ ℕ) |
| 43 | 39, 11, 42 | syl2anr 495 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 + 𝑀) ∈ ℕ) |
| 44 | | fvconst2g 6467 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ (𝑥 + 𝑀) ∈ ℕ) → ((ℕ ×
{𝑋})‘(𝑥 + 𝑀)) = 𝑋) |
| 45 | 41, 43, 44 | syl2anc 693 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋) |
| 46 | 40, 45 | eqtr4d 2659 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = ((ℕ × {𝑋})‘(𝑥 + 𝑀))) |
| 47 | 10, 12, 46 | seqshft2 12827 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq1( + , (ℕ × {𝑋}))‘𝑁) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀))) |
| 48 | 1, 2, 33, 34 | mulgnn 17547 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
| 49 | 8, 24, 48 | syl2anc 693 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
| 50 | 20 | seqeq1d 12807 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → seq(𝑀 + 1)( + , (ℕ × {𝑋})) = seq(1 + 𝑀)( + , (ℕ × {𝑋}))) |
| 51 | 50, 17 | fveq12d 6197 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀))) |
| 52 | 47, 49, 51 | 3eqtr4d 2666 |
. . 3
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) = (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) |
| 53 | 38, 52 | oveq12d 6668 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))) |
| 54 | 30, 36, 53 | 3eqtr4d 2666 |
1
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |