MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzadd Structured version   Visualization version   GIF version

Theorem eluzadd 11716
Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
eluzadd ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))

Proof of Theorem eluzadd
StepHypRef Expression
1 eluzel2 11692 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 fveq2 6191 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ𝑀) = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
32eleq2d 2687 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))))
4 oveq1 6657 . . . . . . . 8 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑀 + 𝐾) = (if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))
54fveq2d 6195 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ‘(𝑀 + 𝐾)) = (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)))
65eleq2d 2687 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)) ↔ (𝑁 + 𝐾) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))))
73, 6imbi12d 334 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾))) ↔ (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + 𝐾) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)))))
8 oveq2 6658 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑁 + 𝐾) = (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)))
9 oveq2 6658 . . . . . . . 8 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾) = (if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))
109fveq2d 6195 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) = (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))))
118, 10eleq12d 2695 . . . . . 6 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 + 𝐾) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) ↔ (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))))
1211imbi2d 330 . . . . 5 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + 𝐾) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))) ↔ (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))))))
13 0z 11388 . . . . . . 7 0 ∈ ℤ
1413elimel 4150 . . . . . 6 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
1513elimel 4150 . . . . . 6 if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ
1614, 15eluzaddi 11714 . . . . 5 (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))))
177, 12, 16dedth2h 4140 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾))))
1817com12 32 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾))))
191, 18mpand 711 . 2 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ ℤ → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾))))
2019imp 445 1 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  ifcif 4086  cfv 5888  (class class class)co 6650  0cc0 9936   + caddc 9939  cz 11377  cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  seqshft2  12827  shftuz  13809  isumshft  14571  vdwlem2  15686  vdwlem8  15692  mulgnndir  17569  mulgnndirOLD  17570  efgcpbllemb  18168  plymullem1  23970  coeeulem  23980  ulmshftlem  24143  ulmshft  24144  fsum2dsub  30685  caushft  33557
  Copyright terms: Public domain W3C validator