MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumul Structured version   Visualization version   GIF version

Theorem mumul 24907
Description: The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumul ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))

Proof of Theorem mumul
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1065 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → 𝐵 ∈ ℕ)
2 mucl 24867 . . . . . 6 (𝐵 ∈ ℕ → (μ‘𝐵) ∈ ℤ)
31, 2syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐵) ∈ ℤ)
43zcnd 11483 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐵) ∈ ℂ)
54mul02d 10234 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (0 · (μ‘𝐵)) = 0)
6 simpr 477 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐴) = 0)
76oveq1d 6665 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → ((μ‘𝐴) · (μ‘𝐵)) = (0 · (μ‘𝐵)))
8 mumullem1 24905 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
983adantl3 1219 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
105, 7, 93eqtr4rd 2667 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
11 simpl1 1064 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → 𝐴 ∈ ℕ)
12 mucl 24867 . . . . . 6 (𝐴 ∈ ℕ → (μ‘𝐴) ∈ ℤ)
1311, 12syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐴) ∈ ℤ)
1413zcnd 11483 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐴) ∈ ℂ)
1514mul01d 10235 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → ((μ‘𝐴) · 0) = 0)
16 simpr 477 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐵) = 0)
1716oveq2d 6666 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → ((μ‘𝐴) · (μ‘𝐵)) = ((μ‘𝐴) · 0))
18 nncn 11028 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
19 nncn 11028 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
20 mulcom 10022 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2118, 19, 20syl2an 494 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2221fveq2d 6195 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (μ‘(𝐴 · 𝐵)) = (μ‘(𝐵 · 𝐴)))
2322adantr 481 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = (μ‘(𝐵 · 𝐴)))
24 mumullem1 24905 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐵 · 𝐴)) = 0)
2524ancom1s 847 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐵 · 𝐴)) = 0)
2623, 25eqtrd 2656 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
27263adantl3 1219 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
2815, 17, 273eqtr4rd 2667 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
29 simpl1 1064 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → 𝐴 ∈ ℕ)
30 simpl2 1065 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → 𝐵 ∈ ℕ)
3129, 30nnmulcld 11068 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (𝐴 · 𝐵) ∈ ℕ)
32 mumullem2 24906 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)
33 muval2 24860 . . . 4 (((𝐴 · 𝐵) ∈ ℕ ∧ (μ‘(𝐴 · 𝐵)) ≠ 0) → (μ‘(𝐴 · 𝐵)) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
3431, 32, 33syl2anc 693 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
35 neg1cn 11124 . . . . . 6 -1 ∈ ℂ
3635a1i 11 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → -1 ∈ ℂ)
37 fzfi 12771 . . . . . . 7 (1...𝐵) ∈ Fin
38 prmnn 15388 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
3938ssriv 3607 . . . . . . . . 9 ℙ ⊆ ℕ
40 rabss2 3685 . . . . . . . . 9 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐵})
4139, 40ax-mp 5 . . . . . . . 8 {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐵}
42 dvdsssfz1 15040 . . . . . . . . 9 (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ⊆ (1...𝐵))
4330, 42syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ⊆ (1...𝐵))
4441, 43syl5ss 3614 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ (1...𝐵))
45 ssfi 8180 . . . . . . 7 (((1...𝐵) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ (1...𝐵)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin)
4637, 44, 45sylancr 695 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin)
47 hashcl 13147 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin → (#‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}) ∈ ℕ0)
4846, 47syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (#‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}) ∈ ℕ0)
49 fzfi 12771 . . . . . . 7 (1...𝐴) ∈ Fin
50 rabss2 3685 . . . . . . . . 9 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐴})
5139, 50ax-mp 5 . . . . . . . 8 {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐴}
52 dvdsssfz1 15040 . . . . . . . . 9 (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝐴} ⊆ (1...𝐴))
5329, 52syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℕ ∣ 𝑝𝐴} ⊆ (1...𝐴))
5451, 53syl5ss 3614 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ (1...𝐴))
55 ssfi 8180 . . . . . . 7 (((1...𝐴) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ (1...𝐴)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
5649, 54, 55sylancr 695 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
57 hashcl 13147 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin → (#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
5856, 57syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
5936, 48, 58expaddd 13010 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (-1↑((#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (#‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))) = ((-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) · (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
60 simpr 477 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
61 simpl1 1064 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
6261nnzd 11481 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
6362adantlr 751 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
64 simpl2 1065 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
6564nnzd 11481 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
6665adantlr 751 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
67 euclemma 15425 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 ∥ (𝐴 · 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
6860, 63, 66, 67syl3anc 1326 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 · 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
6968rabbidva 3188 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)} = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)})
70 unrab 3898 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)}
7169, 70syl6eqr 2674 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)} = ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵}))
7271fveq2d 6195 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}) = (#‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})))
73 inrab 3899 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)}
74 nprmdvds1 15418 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
7574adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ¬ 𝑝 ∥ 1)
76 prmz 15389 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
7776adantl 482 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
78 dvdsgcd 15261 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
7977, 63, 66, 78syl3anc 1326 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
80 simpll3 1102 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) = 1)
8180breq2d 4665 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) ↔ 𝑝 ∥ 1))
8279, 81sylibd 229 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ 1))
8375, 82mtod 189 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ¬ (𝑝𝐴𝑝𝐵))
8483ralrimiva 2966 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ∀𝑝 ∈ ℙ ¬ (𝑝𝐴𝑝𝐵))
85 rabeq0 3957 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)} = ∅ ↔ ∀𝑝 ∈ ℙ ¬ (𝑝𝐴𝑝𝐵))
8684, 85sylibr 224 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)} = ∅)
8773, 86syl5eq 2668 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = ∅)
88 hashun 13171 . . . . . . 7 (({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = ∅) → (#‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})) = ((#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (#‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
8956, 46, 87, 88syl3anc 1326 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (#‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})) = ((#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (#‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9072, 89eqtrd 2656 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}) = ((#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (#‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9190oveq2d 6666 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})) = (-1↑((#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (#‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
92 simprl 794 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐴) ≠ 0)
93 muval2 24860 . . . . . 6 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
9429, 92, 93syl2anc 693 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐴) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
95 simprr 796 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐵) ≠ 0)
96 muval2 24860 . . . . . 6 ((𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0) → (μ‘𝐵) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9730, 95, 96syl2anc 693 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐵) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9894, 97oveq12d 6668 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ((μ‘𝐴) · (μ‘𝐵)) = ((-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) · (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
9959, 91, 983eqtr4rd 2667 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ((μ‘𝐴) · (μ‘𝐵)) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
10034, 99eqtr4d 2659 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
10110, 28, 100pm2.61da2ne 2882 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  cun 3572  cin 3573  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  cn 11020  0cn0 11292  cz 11377  ...cfz 12326  cexp 12860  #chash 13117  cdvds 14983   gcd cgcd 15216  cprime 15385  μcmu 24821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-mu 24827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator