![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhf | Structured version Visualization version GIF version |
Description: The function mapping variables to variable expressions is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvhf.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvhf.e | ⊢ 𝐸 = (mEx‘𝑇) |
mvhf.h | ⊢ 𝐻 = (mVH‘𝑇) |
Ref | Expression |
---|---|
mvhf | ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvhf.v | . . . . . 6 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | eqid 2622 | . . . . . 6 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
3 | eqid 2622 | . . . . . 6 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
4 | 1, 2, 3 | mtyf2 31448 | . . . . 5 ⊢ (𝑇 ∈ mFS → (mType‘𝑇):𝑉⟶(mTC‘𝑇)) |
5 | 4 | ffvelrnda 6359 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → ((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇)) |
6 | elun2 3781 | . . . . . . 7 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) | |
7 | 6 | adantl 482 | . . . . . 6 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) |
8 | 7 | s1cld 13383 | . . . . 5 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → 〈“𝑣”〉 ∈ Word ((mCN‘𝑇) ∪ 𝑉)) |
9 | eqid 2622 | . . . . . . 7 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
10 | eqid 2622 | . . . . . . 7 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
11 | 9, 1, 10 | mrexval 31398 | . . . . . 6 ⊢ (𝑇 ∈ mFS → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ 𝑉)) |
12 | 11 | adantr 481 | . . . . 5 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ 𝑉)) |
13 | 8, 12 | eleqtrrd 2704 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → 〈“𝑣”〉 ∈ (mREx‘𝑇)) |
14 | opelxpi 5148 | . . . 4 ⊢ ((((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇) ∧ 〈“𝑣”〉 ∈ (mREx‘𝑇)) → 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 ∈ ((mTC‘𝑇) × (mREx‘𝑇))) | |
15 | 5, 13, 14 | syl2anc 693 | . . 3 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 ∈ ((mTC‘𝑇) × (mREx‘𝑇))) |
16 | mvhf.e | . . . 4 ⊢ 𝐸 = (mEx‘𝑇) | |
17 | 2, 16, 10 | mexval 31399 | . . 3 ⊢ 𝐸 = ((mTC‘𝑇) × (mREx‘𝑇)) |
18 | 15, 17 | syl6eleqr 2712 | . 2 ⊢ ((𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉) → 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 ∈ 𝐸) |
19 | mvhf.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
20 | 1, 3, 19 | mvhfval 31430 | . 2 ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉) |
21 | 18, 20 | fmptd 6385 | 1 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 〈cop 4183 × cxp 5112 ⟶wf 5884 ‘cfv 5888 Word cword 13291 〈“cs1 13294 mCNcmcn 31357 mVRcmvar 31358 mTypecmty 31359 mTCcmtc 31361 mRExcmrex 31363 mExcmex 31364 mVHcmvh 31369 mFScmfs 31373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-s1 13302 df-mrex 31383 df-mex 31384 df-mvh 31389 df-mfs 31393 |
This theorem is referenced by: mvhf1 31456 msubvrs 31457 mclsssvlem 31459 vhmcls 31463 mclsax 31466 mclsind 31467 mclsppslem 31480 mclspps 31481 |
Copyright terms: Public domain | W3C validator |