MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbumgrvtx Structured version   Visualization version   GIF version

Theorem nbumgrvtx 26242
Description: The set of neighbors of a vertex in a multigraph. (Contributed by AV, 27-Nov-2020.) (Proof shortened by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
nbgrel.v 𝑉 = (Vtx‘𝐺)
nbgrel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbumgrvtx ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉   𝑛,𝐸

Proof of Theorem nbumgrvtx
Dummy variables 𝑒 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nbgrel.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbgrel.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrval 26234 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒})
43adantl 482 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒})
5 eldifi 3732 . . . . . . . . . 10 (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑥𝑉)
65adantl 482 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥𝑉)
76adantr 481 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → 𝑥𝑉)
8 umgrupgr 25998 . . . . . . . . . . . . 13 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph )
98ad4antr 768 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → 𝐺 ∈ UPGraph )
10 simpr 477 . . . . . . . . . . . . 13 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → 𝑒𝐸)
1110adantr 481 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → 𝑒𝐸)
12 simpr 477 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → {𝑁, 𝑥} ⊆ 𝑒)
13 simpr 477 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝑁𝑉)
1413adantr 481 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑉)
15 vex 3203 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
1615a1i 11 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥 ∈ V)
17 eldifsn 4317 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑥𝑉𝑥𝑁))
18 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑉𝑥𝑁) → 𝑥𝑁)
1918necomd 2849 . . . . . . . . . . . . . . . . 17 ((𝑥𝑉𝑥𝑁) → 𝑁𝑥)
2017, 19sylbi 207 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑁𝑥)
2120adantl 482 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑥)
2214, 16, 213jca 1242 . . . . . . . . . . . . . 14 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
2322adantr 481 . . . . . . . . . . . . 13 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
2423adantr 481 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
251, 2upgredgpr 26037 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒) ∧ (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥)) → {𝑁, 𝑥} = 𝑒)
269, 11, 12, 24, 25syl31anc 1329 . . . . . . . . . . 11 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → {𝑁, 𝑥} = 𝑒)
2726ex 450 . . . . . . . . . 10 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑥} ⊆ 𝑒 → {𝑁, 𝑥} = 𝑒))
28 eleq1 2689 . . . . . . . . . . 11 ({𝑁, 𝑥} = 𝑒 → ({𝑁, 𝑥} ∈ 𝐸𝑒𝐸))
2928biimprd 238 . . . . . . . . . 10 ({𝑁, 𝑥} = 𝑒 → (𝑒𝐸 → {𝑁, 𝑥} ∈ 𝐸))
3027, 10, 29syl6ci 71 . . . . . . . . 9 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑥} ⊆ 𝑒 → {𝑁, 𝑥} ∈ 𝐸))
3130impr 649 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → {𝑁, 𝑥} ∈ 𝐸)
327, 31jca 554 . . . . . . 7 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸))
3332rexlimdvaa 3032 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒 → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
3433expimpd 629 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒) → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
35 simprl 794 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥𝑉)
362umgredgne 26040 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑥} ∈ 𝐸) → 𝑁𝑥)
3736ad2ant2rl 785 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑁𝑥)
3837necomd 2849 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥𝑁)
3935, 38, 17sylanbrc 698 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥 ∈ (𝑉 ∖ {𝑁}))
40 simpr 477 . . . . . . . . 9 ((𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸) → {𝑁, 𝑥} ∈ 𝐸)
4140adantl 482 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → {𝑁, 𝑥} ∈ 𝐸)
42 sseq2 3627 . . . . . . . . 9 (𝑒 = {𝑁, 𝑥} → ({𝑁, 𝑥} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ {𝑁, 𝑥}))
4342adantl 482 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) ∧ 𝑒 = {𝑁, 𝑥}) → ({𝑁, 𝑥} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ {𝑁, 𝑥}))
44 ssid 3624 . . . . . . . . 9 {𝑁, 𝑥} ⊆ {𝑁, 𝑥}
4544a1i 11 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → {𝑁, 𝑥} ⊆ {𝑁, 𝑥})
4641, 43, 45rspcedvd 3317 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒)
4739, 46jca 554 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
4847ex 450 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸) → (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒)))
4934, 48impbid 202 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒) ↔ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
50 preq2 4269 . . . . . . 7 (𝑣 = 𝑥 → {𝑁, 𝑣} = {𝑁, 𝑥})
5150sseq1d 3632 . . . . . 6 (𝑣 = 𝑥 → ({𝑁, 𝑣} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ 𝑒))
5251rexbidv 3052 . . . . 5 (𝑣 = 𝑥 → (∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
5352elrab 3363 . . . 4 (𝑥 ∈ {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} ↔ (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
54 preq2 4269 . . . . . 6 (𝑛 = 𝑥 → {𝑁, 𝑛} = {𝑁, 𝑥})
5554eleq1d 2686 . . . . 5 (𝑛 = 𝑥 → ({𝑁, 𝑛} ∈ 𝐸 ↔ {𝑁, 𝑥} ∈ 𝐸))
5655elrab 3363 . . . 4 (𝑥 ∈ {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ↔ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸))
5749, 53, 563bitr4g 303 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝑥 ∈ {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} ↔ 𝑥 ∈ {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}))
5857eqrdv 2620 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
594, 58eqtrd 2656 1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  {csn 4177  {cpr 4179  cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   UPGraph cupgr 25975   UMGraph cumgr 25976   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-umgr 25978  df-nbgr 26228
This theorem is referenced by:  nbumgr  26243  nbusgrvtx  26244  umgr2v2enb1  26422
  Copyright terms: Public domain W3C validator