MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndvdsadd Structured version   Visualization version   GIF version

Theorem ndvdsadd 15134
Description: Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdsadd ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))

Proof of Theorem ndvdsadd
StepHypRef Expression
1 nnre 11027 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2 nnre 11027 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
3 posdif 10521 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐾 < 𝐷 ↔ 0 < (𝐷𝐾)))
41, 2, 3syl2anr 495 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐾 < 𝐷 ↔ 0 < (𝐷𝐾)))
54pm5.32i 669 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) ↔ ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 < (𝐷𝐾)))
6 nnz 11399 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
7 nnz 11399 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
8 zsubcl 11419 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷𝐾) ∈ ℤ)
96, 7, 8syl2an 494 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷𝐾) ∈ ℤ)
10 elnnz 11387 . . . . . . . . 9 ((𝐷𝐾) ∈ ℕ ↔ ((𝐷𝐾) ∈ ℤ ∧ 0 < (𝐷𝐾)))
1110biimpri 218 . . . . . . . 8 (((𝐷𝐾) ∈ ℤ ∧ 0 < (𝐷𝐾)) → (𝐷𝐾) ∈ ℕ)
129, 11sylan 488 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 < (𝐷𝐾)) → (𝐷𝐾) ∈ ℕ)
135, 12sylbi 207 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) → (𝐷𝐾) ∈ ℕ)
1413anasss 679 . . . . 5 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝐾) ∈ ℕ)
15 nngt0 11049 . . . . . . . 8 (𝐾 ∈ ℕ → 0 < 𝐾)
16 ltsubpos 10520 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (0 < 𝐾 ↔ (𝐷𝐾) < 𝐷))
171, 2, 16syl2an 494 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 < 𝐾 ↔ (𝐷𝐾) < 𝐷))
1817biimpd 219 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 < 𝐾 → (𝐷𝐾) < 𝐷))
1918expcom 451 . . . . . . . 8 (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (0 < 𝐾 → (𝐷𝐾) < 𝐷)))
2015, 19mpdi 45 . . . . . . 7 (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (𝐷𝐾) < 𝐷))
2120imp 445 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷𝐾) < 𝐷)
2221adantrr 753 . . . . 5 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝐾) < 𝐷)
2314, 22jca 554 . . . 4 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷))
24233adant1 1079 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷))
25 ndvdssub 15133 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
2624, 25syld3an3 1371 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
27 zaddcl 11417 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
287, 27sylan2 491 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑁 + 𝐾) ∈ ℤ)
29 dvdssubr 15027 . . . . . . . 8 ((𝐷 ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
306, 28, 29syl2an 494 . . . . . . 7 ((𝐷 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
3130an12s 843 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
32313impb 1260 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
33 zcn 11382 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
34 nncn 11028 . . . . . . 7 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
35 nncn 11028 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
36 subsub3 10313 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 − (𝐷𝐾)) = ((𝑁 + 𝐾) − 𝐷))
3733, 34, 35, 36syl3an 1368 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁 − (𝐷𝐾)) = ((𝑁 + 𝐾) − 𝐷))
3837breq2d 4665 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 − (𝐷𝐾)) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
3932, 38bitr4d 271 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
4039notbid 308 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (¬ 𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
41403adant3r 1323 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (¬ 𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
4226, 41sylibrd 249 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939   < clt 10074  cmin 10266  cn 11020  cz 11377  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  ndvdsp1  15135  ndvdsi  15136
  Copyright terms: Public domain W3C validator