MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmblolbii Structured version   Visualization version   GIF version

Theorem nmblolbii 27654
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmblolbi.1 𝑋 = (BaseSet‘𝑈)
nmblolbi.4 𝐿 = (normCV𝑈)
nmblolbi.5 𝑀 = (normCV𝑊)
nmblolbi.6 𝑁 = (𝑈 normOpOLD 𝑊)
nmblolbi.7 𝐵 = (𝑈 BLnOp 𝑊)
nmblolbi.u 𝑈 ∈ NrmCVec
nmblolbi.w 𝑊 ∈ NrmCVec
nmblolbii.b 𝑇𝐵
Assertion
Ref Expression
nmblolbii (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))

Proof of Theorem nmblolbii
StepHypRef Expression
1 fveq2 6191 . . . 4 (𝐴 = (0vec𝑈) → (𝑇𝐴) = (𝑇‘(0vec𝑈)))
21fveq2d 6195 . . 3 (𝐴 = (0vec𝑈) → (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇‘(0vec𝑈))))
3 fveq2 6191 . . . 4 (𝐴 = (0vec𝑈) → (𝐿𝐴) = (𝐿‘(0vec𝑈)))
43oveq2d 6666 . . 3 (𝐴 = (0vec𝑈) → ((𝑁𝑇) · (𝐿𝐴)) = ((𝑁𝑇) · (𝐿‘(0vec𝑈))))
52, 4breq12d 4666 . 2 (𝐴 = (0vec𝑈) → ((𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)) ↔ (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈)))))
6 nmblolbi.u . . . . . . . . 9 𝑈 ∈ NrmCVec
7 nmblolbi.1 . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
8 nmblolbi.4 . . . . . . . . . 10 𝐿 = (normCV𝑈)
97, 8nvcl 27516 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐿𝐴) ∈ ℝ)
106, 9mpan 706 . . . . . . . 8 (𝐴𝑋 → (𝐿𝐴) ∈ ℝ)
1110adantr 481 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ∈ ℝ)
12 eqid 2622 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
137, 12, 8nvz 27524 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝐿𝐴) = 0 ↔ 𝐴 = (0vec𝑈)))
146, 13mpan 706 . . . . . . . . 9 (𝐴𝑋 → ((𝐿𝐴) = 0 ↔ 𝐴 = (0vec𝑈)))
1514necon3bid 2838 . . . . . . . 8 (𝐴𝑋 → ((𝐿𝐴) ≠ 0 ↔ 𝐴 ≠ (0vec𝑈)))
1615biimpar 502 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ≠ 0)
1711, 16rereccld 10852 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (1 / (𝐿𝐴)) ∈ ℝ)
187, 12, 8nvgt0 27529 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴 ≠ (0vec𝑈) ↔ 0 < (𝐿𝐴)))
196, 18mpan 706 . . . . . . . . 9 (𝐴𝑋 → (𝐴 ≠ (0vec𝑈) ↔ 0 < (𝐿𝐴)))
2019biimpa 501 . . . . . . . 8 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 < (𝐿𝐴))
2111, 20recgt0d 10958 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 < (1 / (𝐿𝐴)))
22 0re 10040 . . . . . . . 8 0 ∈ ℝ
23 ltle 10126 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / (𝐿𝐴)) ∈ ℝ) → (0 < (1 / (𝐿𝐴)) → 0 ≤ (1 / (𝐿𝐴))))
2422, 17, 23sylancr 695 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (0 < (1 / (𝐿𝐴)) → 0 ≤ (1 / (𝐿𝐴))))
2521, 24mpd 15 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 ≤ (1 / (𝐿𝐴)))
26 nmblolbi.w . . . . . . . . 9 𝑊 ∈ NrmCVec
27 nmblolbii.b . . . . . . . . 9 𝑇𝐵
28 eqid 2622 . . . . . . . . . 10 (BaseSet‘𝑊) = (BaseSet‘𝑊)
29 nmblolbi.7 . . . . . . . . . 10 𝐵 = (𝑈 BLnOp 𝑊)
307, 28, 29blof 27640 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇:𝑋⟶(BaseSet‘𝑊))
316, 26, 27, 30mp3an 1424 . . . . . . . 8 𝑇:𝑋⟶(BaseSet‘𝑊)
3231ffvelrni 6358 . . . . . . 7 (𝐴𝑋 → (𝑇𝐴) ∈ (BaseSet‘𝑊))
3332adantr 481 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
34 eqid 2622 . . . . . . . 8 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
35 nmblolbi.5 . . . . . . . 8 𝑀 = (normCV𝑊)
3628, 34, 35nvsge0 27519 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐿𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐿𝐴))) ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3726, 36mp3an1 1411 . . . . . 6 ((((1 / (𝐿𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐿𝐴))) ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3817, 25, 33, 37syl21anc 1325 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3917recnd 10068 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (1 / (𝐿𝐴)) ∈ ℂ)
40 simpl 473 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 𝐴𝑋)
41 eqid 2622 . . . . . . . . . . 11 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
4241, 29bloln 27639 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊))
436, 26, 27, 42mp3an 1424 . . . . . . . . 9 𝑇 ∈ (𝑈 LnOp 𝑊)
446, 26, 433pm3.2i 1239 . . . . . . . 8 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊))
45 eqid 2622 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
467, 45, 34, 41lnomul 27615 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ ((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋)) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4744, 46mpan 706 . . . . . . 7 (((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4839, 40, 47syl2anc 693 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4948fveq2d 6195 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) = (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))))
5028, 35nvcl 27516 . . . . . . . . 9 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5126, 32, 50sylancr 695 . . . . . . . 8 (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5251adantr 481 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5352recnd 10068 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ∈ ℂ)
5411recnd 10068 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ∈ ℂ)
5553, 54, 16divrec2d 10805 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
5638, 49, 553eqtr4rd 2667 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) = (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))))
577, 45nvscl 27481 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
586, 57mp3an1 1411 . . . . . . 7 (((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
5958ancoms 469 . . . . . 6 ((𝐴𝑋 ∧ (1 / (𝐿𝐴)) ∈ ℂ) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
6039, 59syldan 487 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
617, 8nvcl 27516 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ)
626, 60, 61sylancr 695 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ)
637, 45, 12, 8nv1 27530 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1)
646, 63mp3an1 1411 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1)
65 eqle 10139 . . . . . 6 (((𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)
6662, 64, 65syl2anc 693 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)
676, 26, 313pm3.2i 1239 . . . . . 6 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊))
68 nmblolbi.6 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
697, 28, 8, 35, 68nmoolb 27626 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊)) ∧ (((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋 ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7067, 69mpan 706 . . . . 5 ((((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋 ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7160, 66, 70syl2anc 693 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7256, 71eqbrtrd 4675 . . 3 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇))
737, 28, 68, 29nmblore 27641 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → (𝑁𝑇) ∈ ℝ)
746, 26, 27, 73mp3an 1424 . . . . 5 (𝑁𝑇) ∈ ℝ
7574a1i 11 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑁𝑇) ∈ ℝ)
76 ledivmul2 10902 . . . 4 (((𝑀‘(𝑇𝐴)) ∈ ℝ ∧ (𝑁𝑇) ∈ ℝ ∧ ((𝐿𝐴) ∈ ℝ ∧ 0 < (𝐿𝐴))) → (((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇) ↔ (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))))
7752, 75, 11, 20, 76syl112anc 1330 . . 3 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇) ↔ (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))))
7872, 77mpbid 222 . 2 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))
79 0le0 11110 . . . 4 0 ≤ 0
80 eqid 2622 . . . . . . . 8 (0vec𝑊) = (0vec𝑊)
817, 28, 12, 80, 41lno0 27611 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
826, 26, 43, 81mp3an 1424 . . . . . 6 (𝑇‘(0vec𝑈)) = (0vec𝑊)
8382fveq2i 6194 . . . . 5 (𝑀‘(𝑇‘(0vec𝑈))) = (𝑀‘(0vec𝑊))
8480, 35nvz0 27523 . . . . . 6 (𝑊 ∈ NrmCVec → (𝑀‘(0vec𝑊)) = 0)
8526, 84ax-mp 5 . . . . 5 (𝑀‘(0vec𝑊)) = 0
8683, 85eqtri 2644 . . . 4 (𝑀‘(𝑇‘(0vec𝑈))) = 0
8712, 8nvz0 27523 . . . . . . 7 (𝑈 ∈ NrmCVec → (𝐿‘(0vec𝑈)) = 0)
886, 87ax-mp 5 . . . . . 6 (𝐿‘(0vec𝑈)) = 0
8988oveq2i 6661 . . . . 5 ((𝑁𝑇) · (𝐿‘(0vec𝑈))) = ((𝑁𝑇) · 0)
9074recni 10052 . . . . . 6 (𝑁𝑇) ∈ ℂ
9190mul01i 10226 . . . . 5 ((𝑁𝑇) · 0) = 0
9289, 91eqtri 2644 . . . 4 ((𝑁𝑇) · (𝐿‘(0vec𝑈))) = 0
9379, 86, 923brtr4i 4683 . . 3 (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈)))
9493a1i 11 . 2 (𝐴𝑋 → (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈))))
955, 78, 94pm2.61ne 2879 1 (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  NrmCVeccnv 27439  BaseSetcba 27441   ·𝑠OLD cns 27442  0veccn0v 27443  normCVcnmcv 27445   LnOp clno 27595   normOpOLD cnmoo 27596   BLnOp cblo 27597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-lno 27599  df-nmoo 27600  df-blo 27601
This theorem is referenced by:  nmblolbi  27655
  Copyright terms: Public domain W3C validator