HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopun Structured version   Visualization version   GIF version

Theorem nmopun 28873
Description: Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopun (( ℋ ≠ 0𝑇 ∈ UniOp) → (normop𝑇) = 1)

Proof of Theorem nmopun
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unoplin 28779 . . . . 5 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
2 lnopf 28718 . . . . 5 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2syl 17 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
4 nmopval 28715 . . . 4 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
53, 4syl 17 . . 3 (𝑇 ∈ UniOp → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
65adantl 482 . 2 (( ℋ ≠ 0𝑇 ∈ UniOp) → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
7 nmopsetretHIL 28723 . . . . . . 7 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ)
8 ressxr 10083 . . . . . . 7 ℝ ⊆ ℝ*
97, 8syl6ss 3615 . . . . . 6 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
103, 9syl 17 . . . . 5 (𝑇 ∈ UniOp → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
1110adantl 482 . . . 4 (( ℋ ≠ 0𝑇 ∈ UniOp) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
12 1re 10039 . . . . 5 1 ∈ ℝ
1312rexri 10097 . . . 4 1 ∈ ℝ*
1411, 13jctir 561 . . 3 (( ℋ ≠ 0𝑇 ∈ UniOp) → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ* ∧ 1 ∈ ℝ*))
15 vex 3203 . . . . . . 7 𝑧 ∈ V
16 eqeq1 2626 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = (norm‘(𝑇𝑦)) ↔ 𝑧 = (norm‘(𝑇𝑦))))
1716anbi2d 740 . . . . . . . 8 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦)))))
1817rexbidv 3052 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦)))))
1915, 18elab 3350 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))))
20 unopnorm 28776 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑦)) = (norm𝑦))
2120eqeq2d 2632 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (𝑧 = (norm‘(𝑇𝑦)) ↔ 𝑧 = (norm𝑦)))
2221anbi2d 740 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm𝑦))))
23 breq1 4656 . . . . . . . . . 10 (𝑧 = (norm𝑦) → (𝑧 ≤ 1 ↔ (norm𝑦) ≤ 1))
2423biimparc 504 . . . . . . . . 9 (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm𝑦)) → 𝑧 ≤ 1)
2522, 24syl6bi 243 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))) → 𝑧 ≤ 1))
2625rexlimdva 3031 . . . . . . 7 (𝑇 ∈ UniOp → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))) → 𝑧 ≤ 1))
2726imp 445 . . . . . 6 ((𝑇 ∈ UniOp ∧ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦)))) → 𝑧 ≤ 1)
2819, 27sylan2b 492 . . . . 5 ((𝑇 ∈ UniOp ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}) → 𝑧 ≤ 1)
2928ralrimiva 2966 . . . 4 (𝑇 ∈ UniOp → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 ≤ 1)
3029adantl 482 . . 3 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 ≤ 1)
31 hne0 28406 . . . . . . . . . . 11 ( ℋ ≠ 0 ↔ ∃𝑦 ∈ ℋ 𝑦 ≠ 0)
32 norm1hex 28108 . . . . . . . . . . 11 (∃𝑦 ∈ ℋ 𝑦 ≠ 0 ↔ ∃𝑦 ∈ ℋ (norm𝑦) = 1)
3331, 32sylbb 209 . . . . . . . . . 10 ( ℋ ≠ 0 → ∃𝑦 ∈ ℋ (norm𝑦) = 1)
3433adantr 481 . . . . . . . . 9 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∃𝑦 ∈ ℋ (norm𝑦) = 1)
35 1le1 10655 . . . . . . . . . . . . . 14 1 ≤ 1
36 breq1 4656 . . . . . . . . . . . . . 14 ((norm𝑦) = 1 → ((norm𝑦) ≤ 1 ↔ 1 ≤ 1))
3735, 36mpbiri 248 . . . . . . . . . . . . 13 ((norm𝑦) = 1 → (norm𝑦) ≤ 1)
3837a1i 11 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → (norm𝑦) ≤ 1))
3920adantr 481 . . . . . . . . . . . . . . 15 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → (norm‘(𝑇𝑦)) = (norm𝑦))
40 eqeq2 2633 . . . . . . . . . . . . . . . 16 ((norm𝑦) = 1 → ((norm‘(𝑇𝑦)) = (norm𝑦) ↔ (norm‘(𝑇𝑦)) = 1))
4140adantl 482 . . . . . . . . . . . . . . 15 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → ((norm‘(𝑇𝑦)) = (norm𝑦) ↔ (norm‘(𝑇𝑦)) = 1))
4239, 41mpbid 222 . . . . . . . . . . . . . 14 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → (norm‘(𝑇𝑦)) = 1)
4342eqcomd 2628 . . . . . . . . . . . . 13 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → 1 = (norm‘(𝑇𝑦)))
4443ex 450 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → 1 = (norm‘(𝑇𝑦))))
4538, 44jcad 555 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
4645adantll 750 . . . . . . . . . 10 ((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
4746reximdva 3017 . . . . . . . . 9 (( ℋ ≠ 0𝑇 ∈ UniOp) → (∃𝑦 ∈ ℋ (norm𝑦) = 1 → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
4834, 47mpd 15 . . . . . . . 8 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦))))
49 1ex 10035 . . . . . . . . 9 1 ∈ V
50 eqeq1 2626 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 = (norm‘(𝑇𝑦)) ↔ 1 = (norm‘(𝑇𝑦))))
5150anbi2d 740 . . . . . . . . . 10 (𝑥 = 1 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
5251rexbidv 3052 . . . . . . . . 9 (𝑥 = 1 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
5349, 52elab 3350 . . . . . . . 8 (1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦))))
5448, 53sylibr 224 . . . . . . 7 (( ℋ ≠ 0𝑇 ∈ UniOp) → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
5554adantr 481 . . . . . 6 ((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
56 breq2 4657 . . . . . . 7 (𝑤 = 1 → (𝑧 < 𝑤𝑧 < 1))
5756rspcev 3309 . . . . . 6 ((1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤)
5855, 57sylan 488 . . . . 5 (((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤)
5958ex 450 . . . 4 ((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) → (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤))
6059ralrimiva 2966 . . 3 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤))
61 supxr2 12144 . . 3 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ* ∧ 1 ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ) = 1)
6214, 30, 60, 61syl12anc 1324 . 2 (( ℋ ≠ 0𝑇 ∈ UniOp) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ) = 1)
636, 62eqtrd 2656 1 (( ℋ ≠ 0𝑇 ∈ UniOp) → (normop𝑇) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  wf 5884  cfv 5888  supcsup 8346  cr 9935  1c1 9937  *cxr 10073   < clt 10074  cle 10075  chil 27776  normcno 27780  0c0v 27781  0c0h 27792  normopcnop 27802  LinOpclo 27804  UniOpcuo 27806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-grpo 27347  df-gid 27348  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-hlim 27829  df-sh 28064  df-ch 28078  df-ch0 28110  df-nmop 28698  df-lnop 28700  df-unop 28702
This theorem is referenced by:  unopbd  28874  unierri  28963
  Copyright terms: Public domain W3C validator