| Step | Hyp | Ref
| Expression |
| 1 | | unoplin 28779 |
. . . . 5
⊢ (𝑇 ∈ UniOp → 𝑇 ∈ LinOp) |
| 2 | | lnopf 28718 |
. . . . 5
⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶
ℋ) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝑇 ∈ UniOp → 𝑇: ℋ⟶
ℋ) |
| 4 | | nmopval 28715 |
. . . 4
⊢ (𝑇: ℋ⟶ ℋ →
(normop‘𝑇)
= sup({𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, <
)) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ (𝑇 ∈ UniOp →
(normop‘𝑇)
= sup({𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, <
)) |
| 6 | 5 | adantl 482 |
. 2
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) →
(normop‘𝑇)
= sup({𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, <
)) |
| 7 | | nmopsetretHIL 28723 |
. . . . . . 7
⊢ (𝑇: ℋ⟶ ℋ →
{𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) |
| 8 | | ressxr 10083 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
| 9 | 7, 8 | syl6ss 3615 |
. . . . . 6
⊢ (𝑇: ℋ⟶ ℋ →
{𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆
ℝ*) |
| 10 | 3, 9 | syl 17 |
. . . . 5
⊢ (𝑇 ∈ UniOp → {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆
ℝ*) |
| 11 | 10 | adantl 482 |
. . . 4
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆
ℝ*) |
| 12 | | 1re 10039 |
. . . . 5
⊢ 1 ∈
ℝ |
| 13 | 12 | rexri 10097 |
. . . 4
⊢ 1 ∈
ℝ* |
| 14 | 11, 13 | jctir 561 |
. . 3
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → ({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ 1
∈ ℝ*)) |
| 15 | | vex 3203 |
. . . . . . 7
⊢ 𝑧 ∈ V |
| 16 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 = (normℎ‘(𝑇‘𝑦)) ↔ 𝑧 = (normℎ‘(𝑇‘𝑦)))) |
| 17 | 16 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦))))) |
| 18 | 17 | rexbidv 3052 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦))))) |
| 19 | 15, 18 | elab 3350 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦)))) |
| 20 | | unopnorm 28776 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
(normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦)) |
| 21 | 20 | eqeq2d 2632 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (𝑧 =
(normℎ‘(𝑇‘𝑦)) ↔ 𝑧 = (normℎ‘𝑦))) |
| 22 | 21 | anbi2d 740 |
. . . . . . . . 9
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘𝑦)))) |
| 23 | | breq1 4656 |
. . . . . . . . . 10
⊢ (𝑧 =
(normℎ‘𝑦) → (𝑧 ≤ 1 ↔
(normℎ‘𝑦) ≤ 1)) |
| 24 | 23 | biimparc 504 |
. . . . . . . . 9
⊢
(((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘𝑦)) → 𝑧 ≤ 1) |
| 25 | 22, 24 | syl6bi 243 |
. . . . . . . 8
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦))) → 𝑧 ≤ 1)) |
| 26 | 25 | rexlimdva 3031 |
. . . . . . 7
⊢ (𝑇 ∈ UniOp →
(∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦))) → 𝑧 ≤ 1)) |
| 27 | 26 | imp 445 |
. . . . . 6
⊢ ((𝑇 ∈ UniOp ∧ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦)))) → 𝑧 ≤ 1) |
| 28 | 19, 27 | sylan2b 492 |
. . . . 5
⊢ ((𝑇 ∈ UniOp ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) → 𝑧 ≤ 1) |
| 29 | 28 | ralrimiva 2966 |
. . . 4
⊢ (𝑇 ∈ UniOp →
∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 ≤ 1) |
| 30 | 29 | adantl 482 |
. . 3
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 ≤ 1) |
| 31 | | hne0 28406 |
. . . . . . . . . . 11
⊢ ( ℋ
≠ 0ℋ ↔ ∃𝑦 ∈ ℋ 𝑦 ≠ 0ℎ) |
| 32 | | norm1hex 28108 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
ℋ 𝑦 ≠
0ℎ ↔ ∃𝑦 ∈ ℋ
(normℎ‘𝑦) = 1) |
| 33 | 31, 32 | sylbb 209 |
. . . . . . . . . 10
⊢ ( ℋ
≠ 0ℋ → ∃𝑦 ∈ ℋ
(normℎ‘𝑦) = 1) |
| 34 | 33 | adantr 481 |
. . . . . . . . 9
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → ∃𝑦 ∈ ℋ
(normℎ‘𝑦) = 1) |
| 35 | | 1le1 10655 |
. . . . . . . . . . . . . 14
⊢ 1 ≤
1 |
| 36 | | breq1 4656 |
. . . . . . . . . . . . . 14
⊢
((normℎ‘𝑦) = 1 →
((normℎ‘𝑦) ≤ 1 ↔ 1 ≤ 1)) |
| 37 | 35, 36 | mpbiri 248 |
. . . . . . . . . . . . 13
⊢
((normℎ‘𝑦) = 1 →
(normℎ‘𝑦) ≤ 1) |
| 38 | 37 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
((normℎ‘𝑦) = 1 →
(normℎ‘𝑦) ≤ 1)) |
| 39 | 20 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) = 1) →
(normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦)) |
| 40 | | eqeq2 2633 |
. . . . . . . . . . . . . . . 16
⊢
((normℎ‘𝑦) = 1 →
((normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) ↔
(normℎ‘(𝑇‘𝑦)) = 1)) |
| 41 | 40 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) = 1) →
((normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) ↔
(normℎ‘(𝑇‘𝑦)) = 1)) |
| 42 | 39, 41 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) = 1) →
(normℎ‘(𝑇‘𝑦)) = 1) |
| 43 | 42 | eqcomd 2628 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) = 1) → 1 =
(normℎ‘(𝑇‘𝑦))) |
| 44 | 43 | ex 450 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
((normℎ‘𝑦) = 1 → 1 =
(normℎ‘(𝑇‘𝑦)))) |
| 45 | 38, 44 | jcad 555 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
((normℎ‘𝑦) = 1 →
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦))))) |
| 46 | 45 | adantll 750 |
. . . . . . . . . 10
⊢ (((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) ∧ 𝑦 ∈ ℋ) →
((normℎ‘𝑦) = 1 →
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦))))) |
| 47 | 46 | reximdva 3017 |
. . . . . . . . 9
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → (∃𝑦 ∈ ℋ
(normℎ‘𝑦) = 1 → ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦))))) |
| 48 | 34, 47 | mpd 15 |
. . . . . . . 8
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦)))) |
| 49 | | 1ex 10035 |
. . . . . . . . 9
⊢ 1 ∈
V |
| 50 | | eqeq1 2626 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝑥 = (normℎ‘(𝑇‘𝑦)) ↔ 1 =
(normℎ‘(𝑇‘𝑦)))) |
| 51 | 50 | anbi2d 740 |
. . . . . . . . . 10
⊢ (𝑥 = 1 →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦))))) |
| 52 | 51 | rexbidv 3052 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦))))) |
| 53 | 49, 52 | elab 3350 |
. . . . . . . 8
⊢ (1 ∈
{𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦)))) |
| 54 | 48, 53 | sylibr 224 |
. . . . . . 7
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) |
| 55 | 54 | adantr 481 |
. . . . . 6
⊢ (((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) |
| 56 | | breq2 4657 |
. . . . . . 7
⊢ (𝑤 = 1 → (𝑧 < 𝑤 ↔ 𝑧 < 1)) |
| 57 | 56 | rspcev 3309 |
. . . . . 6
⊢ ((1
∈ {𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 < 𝑤) |
| 58 | 55, 57 | sylan 488 |
. . . . 5
⊢ ((((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 < 𝑤) |
| 59 | 58 | ex 450 |
. . . 4
⊢ (((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) → (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 < 𝑤)) |
| 60 | 59 | ralrimiva 2966 |
. . 3
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 < 𝑤)) |
| 61 | | supxr2 12144 |
. . 3
⊢ ((({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ 1
∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) =
1) |
| 62 | 14, 30, 60, 61 | syl12anc 1324 |
. 2
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) =
1) |
| 63 | 6, 62 | eqtrd 2656 |
1
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) →
(normop‘𝑇)
= 1) |