MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0seqcvgd Structured version   Visualization version   GIF version

Theorem nn0seqcvgd 15283
Description: A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
nn0seqcvgd.1 (𝜑𝐹:ℕ0⟶ℕ0)
nn0seqcvgd.2 (𝜑𝑁 = (𝐹‘0))
nn0seqcvgd.3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))
Assertion
Ref Expression
nn0seqcvgd (𝜑 → (𝐹𝑁) = 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘

Proof of Theorem nn0seqcvgd
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0seqcvgd.2 . . . . . 6 (𝜑𝑁 = (𝐹‘0))
2 nn0seqcvgd.1 . . . . . . 7 (𝜑𝐹:ℕ0⟶ℕ0)
3 0nn0 11307 . . . . . . 7 0 ∈ ℕ0
4 ffvelrn 6357 . . . . . . 7 ((𝐹:ℕ0⟶ℕ0 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ ℕ0)
52, 3, 4sylancl 694 . . . . . 6 (𝜑 → (𝐹‘0) ∈ ℕ0)
61, 5eqeltrd 2701 . . . . 5 (𝜑𝑁 ∈ ℕ0)
76nn0red 11352 . . . . . 6 (𝜑𝑁 ∈ ℝ)
87leidd 10594 . . . . 5 (𝜑𝑁𝑁)
9 fveq2 6191 . . . . . . . 8 (𝑚 = 0 → (𝐹𝑚) = (𝐹‘0))
10 oveq2 6658 . . . . . . . 8 (𝑚 = 0 → (𝑁𝑚) = (𝑁 − 0))
119, 10breq12d 4666 . . . . . . 7 (𝑚 = 0 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹‘0) ≤ (𝑁 − 0)))
1211imbi2d 330 . . . . . 6 (𝑚 = 0 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹‘0) ≤ (𝑁 − 0))))
13 fveq2 6191 . . . . . . . 8 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
14 oveq2 6658 . . . . . . . 8 (𝑚 = 𝑘 → (𝑁𝑚) = (𝑁𝑘))
1513, 14breq12d 4666 . . . . . . 7 (𝑚 = 𝑘 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹𝑘) ≤ (𝑁𝑘)))
1615imbi2d 330 . . . . . 6 (𝑚 = 𝑘 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹𝑘) ≤ (𝑁𝑘))))
17 fveq2 6191 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝐹𝑚) = (𝐹‘(𝑘 + 1)))
18 oveq2 6658 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝑁𝑚) = (𝑁 − (𝑘 + 1)))
1917, 18breq12d 4666 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
2019imbi2d 330 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
21 fveq2 6191 . . . . . . . 8 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
22 oveq2 6658 . . . . . . . 8 (𝑚 = 𝑁 → (𝑁𝑚) = (𝑁𝑁))
2321, 22breq12d 4666 . . . . . . 7 (𝑚 = 𝑁 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹𝑁) ≤ (𝑁𝑁)))
2423imbi2d 330 . . . . . 6 (𝑚 = 𝑁 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁))))
251, 8eqbrtrrd 4677 . . . . . . . 8 (𝜑 → (𝐹‘0) ≤ 𝑁)
267recnd 10068 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
2726subid1d 10381 . . . . . . . 8 (𝜑 → (𝑁 − 0) = 𝑁)
2825, 27breqtrrd 4681 . . . . . . 7 (𝜑 → (𝐹‘0) ≤ (𝑁 − 0))
2928a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → (𝜑 → (𝐹‘0) ≤ (𝑁 − 0)))
30 nn0re 11301 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
31 posdif 10521 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
3230, 7, 31syl2anr 495 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
3332adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
34 breq1 4656 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝑘 + 1)) = 0 → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ 0 < (𝑁𝑘)))
3534adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ 0 < (𝑁𝑘)))
36 peano2nn0 11333 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
37 ffvelrn 6357 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℕ0⟶ℕ0 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℕ0)
382, 36, 37syl2an 494 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℕ0)
3938nn0zd 11480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℤ)
406nn0zd 11480 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
41 nn0z 11400 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
42 zsubcl 11419 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
4340, 41, 42syl2an 494 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℤ)
44 zltlem1 11430 . . . . . . . . . . . . . . . . . 18 (((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝑁𝑘) ∈ ℤ) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1)))
4539, 43, 44syl2anc 693 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1)))
46 nn0cn 11302 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
47 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
48 subsub4 10314 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
4947, 48mp3an3 1413 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
5026, 46, 49syl2an 494 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
5150breq2d 4665 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5245, 51bitrd 268 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5352adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5433, 35, 533bitr2d 296 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5554biimpa 501 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) ∧ 𝑘 < 𝑁) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))
5655an32s 846 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))
5756a1d 25 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
58 nn0seqcvgd.3 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))
5938nn0red 11352 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
602ffvelrnda 6359 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℕ0)
6160nn0red 11352 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ)
6243zred 11482 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℝ)
63 ltletr 10129 . . . . . . . . . . . . . . . 16 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ ∧ (𝑁𝑘) ∈ ℝ) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁𝑘)))
6459, 61, 62, 63syl3anc 1326 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁𝑘)))
6564, 52sylibd 229 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6658, 65syland 498 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6766adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6867expdimp 453 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) ≠ 0) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6957, 68pm2.61dane 2881 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
7069anasss 679 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑘 < 𝑁)) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
7170expcom 451 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑘 < 𝑁) → (𝜑 → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
7271a2d 29 . . . . . . 7 ((𝑘 ∈ ℕ0𝑘 < 𝑁) → ((𝜑 → (𝐹𝑘) ≤ (𝑁𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
73723adant1 1079 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0𝑘 < 𝑁) → ((𝜑 → (𝐹𝑘) ≤ (𝑁𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
7412, 16, 20, 24, 29, 73fnn0ind 11476 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ ℕ0𝑁𝑁) → (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁)))
756, 6, 8, 74syl3anc 1326 . . . 4 (𝜑 → (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁)))
7675pm2.43i 52 . . 3 (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁))
7726subidd 10380 . . 3 (𝜑 → (𝑁𝑁) = 0)
7876, 77breqtrd 4679 . 2 (𝜑 → (𝐹𝑁) ≤ 0)
792, 6ffvelrnd 6360 . . 3 (𝜑 → (𝐹𝑁) ∈ ℕ0)
8079nn0ge0d 11354 . 2 (𝜑 → 0 ≤ (𝐹𝑁))
8179nn0red 11352 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ)
82 0re 10040 . . 3 0 ∈ ℝ
83 letri3 10123 . . 3 (((𝐹𝑁) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐹𝑁) = 0 ↔ ((𝐹𝑁) ≤ 0 ∧ 0 ≤ (𝐹𝑁))))
8481, 82, 83sylancl 694 . 2 (𝜑 → ((𝐹𝑁) = 0 ↔ ((𝐹𝑁) ≤ 0 ∧ 0 ≤ (𝐹𝑁))))
8578, 80, 84mpbir2and 957 1 (𝜑 → (𝐹𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  0cn0 11292  cz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378
This theorem is referenced by:  algcvg  15289  nn0seqcvg  31570
  Copyright terms: Public domain W3C validator