MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsub Structured version   Visualization version   GIF version

Theorem nnsub 11059
Description: Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnsub ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))

Proof of Theorem nnsub
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . . 6 (𝑥 = 1 → (𝑧 < 𝑥𝑧 < 1))
2 oveq1 6657 . . . . . . 7 (𝑥 = 1 → (𝑥𝑧) = (1 − 𝑧))
32eleq1d 2686 . . . . . 6 (𝑥 = 1 → ((𝑥𝑧) ∈ ℕ ↔ (1 − 𝑧) ∈ ℕ))
41, 3imbi12d 334 . . . . 5 (𝑥 = 1 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)))
54ralbidv 2986 . . . 4 (𝑥 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)))
6 breq2 4657 . . . . . 6 (𝑥 = 𝑦 → (𝑧 < 𝑥𝑧 < 𝑦))
7 oveq1 6657 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑧) = (𝑦𝑧))
87eleq1d 2686 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑧) ∈ ℕ ↔ (𝑦𝑧) ∈ ℕ))
96, 8imbi12d 334 . . . . 5 (𝑥 = 𝑦 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ)))
109ralbidv 2986 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ)))
11 breq2 4657 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑧 < 𝑥𝑧 < (𝑦 + 1)))
12 oveq1 6657 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥𝑧) = ((𝑦 + 1) − 𝑧))
1312eleq1d 2686 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ))
1411, 13imbi12d 334 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
1514ralbidv 2986 . . . 4 (𝑥 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
16 breq2 4657 . . . . . 6 (𝑥 = 𝐵 → (𝑧 < 𝑥𝑧 < 𝐵))
17 oveq1 6657 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝑧) = (𝐵𝑧))
1817eleq1d 2686 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝑧) ∈ ℕ ↔ (𝐵𝑧) ∈ ℕ))
1916, 18imbi12d 334 . . . . 5 (𝑥 = 𝐵 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)))
2019ralbidv 2986 . . . 4 (𝑥 = 𝐵 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)))
21 nnnlt1 11050 . . . . . 6 (𝑧 ∈ ℕ → ¬ 𝑧 < 1)
2221pm2.21d 118 . . . . 5 (𝑧 ∈ ℕ → (𝑧 < 1 → (1 − 𝑧) ∈ ℕ))
2322rgen 2922 . . . 4 𝑧 ∈ ℕ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)
24 breq1 4656 . . . . . . 7 (𝑧 = 𝑥 → (𝑧 < 𝑦𝑥 < 𝑦))
25 oveq2 6658 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦𝑧) = (𝑦𝑥))
2625eleq1d 2686 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦𝑧) ∈ ℕ ↔ (𝑦𝑥) ∈ ℕ))
2724, 26imbi12d 334 . . . . . 6 (𝑧 = 𝑥 → ((𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) ↔ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ)))
2827cbvralv 3171 . . . . 5 (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) ↔ ∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ))
29 nncn 11028 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
3029adantr 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈ ℂ)
31 ax-1cn 9994 . . . . . . . . . . . 12 1 ∈ ℂ
32 pncan 10287 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
3330, 31, 32sylancl 694 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) = 𝑦)
34 simpl 473 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈ ℕ)
3533, 34eqeltrd 2701 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) ∈ ℕ)
36 oveq2 6658 . . . . . . . . . . 11 (𝑧 = 1 → ((𝑦 + 1) − 𝑧) = ((𝑦 + 1) − 1))
3736eleq1d 2686 . . . . . . . . . 10 (𝑧 = 1 → (((𝑦 + 1) − 𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ))
3835, 37syl5ibrcom 237 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → ((𝑦 + 1) − 𝑧) ∈ ℕ))
3938a1dd 50 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
4039a1dd 50 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))))
41 breq1 4656 . . . . . . . . . 10 (𝑥 = (𝑧 − 1) → (𝑥 < 𝑦 ↔ (𝑧 − 1) < 𝑦))
42 oveq2 6658 . . . . . . . . . . 11 (𝑥 = (𝑧 − 1) → (𝑦𝑥) = (𝑦 − (𝑧 − 1)))
4342eleq1d 2686 . . . . . . . . . 10 (𝑥 = (𝑧 − 1) → ((𝑦𝑥) ∈ ℕ ↔ (𝑦 − (𝑧 − 1)) ∈ ℕ))
4441, 43imbi12d 334 . . . . . . . . 9 (𝑥 = (𝑧 − 1) → ((𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) ↔ ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ)))
4544rspcv 3305 . . . . . . . 8 ((𝑧 − 1) ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ)))
46 nnre 11027 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
47 nnre 11027 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
48 1re 10039 . . . . . . . . . . . 12 1 ∈ ℝ
49 ltsubadd 10498 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
5048, 49mp3an2 1412 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
5146, 47, 50syl2anr 495 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
52 nncn 11028 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
53 subsub3 10313 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5431, 53mp3an3 1413 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5529, 52, 54syl2an 494 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5655eleq1d 2686 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 − (𝑧 − 1)) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ))
5751, 56imbi12d 334 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
5857biimpd 219 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
5945, 58syl9r 78 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))))
60 nn1m1nn 11040 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ))
6160adantl 482 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ))
6240, 59, 61mpjaod 396 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
6362ralrimdva 2969 . . . . 5 (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
6428, 63syl5bi 232 . . . 4 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
655, 10, 15, 20, 23, 64nnind 11038 . . 3 (𝐵 ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ))
66 breq1 4656 . . . . 5 (𝑧 = 𝐴 → (𝑧 < 𝐵𝐴 < 𝐵))
67 oveq2 6658 . . . . . 6 (𝑧 = 𝐴 → (𝐵𝑧) = (𝐵𝐴))
6867eleq1d 2686 . . . . 5 (𝑧 = 𝐴 → ((𝐵𝑧) ∈ ℕ ↔ (𝐵𝐴) ∈ ℕ))
6966, 68imbi12d 334 . . . 4 (𝑧 = 𝐴 → ((𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ) ↔ (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ)))
7069rspcva 3307 . . 3 ((𝐴 ∈ ℕ ∧ ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)) → (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ))
7165, 70sylan2 491 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ))
72 nngt0 11049 . . 3 ((𝐵𝐴) ∈ ℕ → 0 < (𝐵𝐴))
73 nnre 11027 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
74 nnre 11027 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
75 posdif 10521 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
7673, 74, 75syl2an 494 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
7772, 76syl5ibr 236 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵𝐴) ∈ ℕ → 𝐴 < 𝐵))
7871, 77impbid 202 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cmin 10266  cn 11020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021
This theorem is referenced by:  nnsubi  11060  nn0sub  11343  uz3m2nn  11731  faclbnd4lem4  13083  pythagtriplem13  15532  vdwlem12  15696  perfectlem1  24954  crctcshwlkn0lem6  26707  crctcshwlkn0lem7  26708  bcprod  31624  nndivsub  32456  perfectALTVlem1  41630
  Copyright terms: Public domain W3C validator