MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem12 Structured version   Visualization version   GIF version

Theorem vdwlem12 15696
Description: Lemma for vdw 15698. 𝐾 = 2 base case of induction. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem12.f (𝜑𝐹:(1...((#‘𝑅) + 1))⟶𝑅)
vdwlem12.2 (𝜑 → ¬ 2 MonoAP 𝐹)
Assertion
Ref Expression
vdwlem12 ¬ 𝜑

Proof of Theorem vdwlem12
Dummy variables 𝑎 𝑐 𝑑 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw.r . . . . . . 7 (𝜑𝑅 ∈ Fin)
2 hashcl 13147 . . . . . . 7 (𝑅 ∈ Fin → (#‘𝑅) ∈ ℕ0)
31, 2syl 17 . . . . . 6 (𝜑 → (#‘𝑅) ∈ ℕ0)
43nn0red 11352 . . . . 5 (𝜑 → (#‘𝑅) ∈ ℝ)
54ltp1d 10954 . . . 4 (𝜑 → (#‘𝑅) < ((#‘𝑅) + 1))
6 nn0p1nn 11332 . . . . . . 7 ((#‘𝑅) ∈ ℕ0 → ((#‘𝑅) + 1) ∈ ℕ)
73, 6syl 17 . . . . . 6 (𝜑 → ((#‘𝑅) + 1) ∈ ℕ)
87nnnn0d 11351 . . . . 5 (𝜑 → ((#‘𝑅) + 1) ∈ ℕ0)
9 hashfz1 13134 . . . . 5 (((#‘𝑅) + 1) ∈ ℕ0 → (#‘(1...((#‘𝑅) + 1))) = ((#‘𝑅) + 1))
108, 9syl 17 . . . 4 (𝜑 → (#‘(1...((#‘𝑅) + 1))) = ((#‘𝑅) + 1))
115, 10breqtrrd 4681 . . 3 (𝜑 → (#‘𝑅) < (#‘(1...((#‘𝑅) + 1))))
12 fzfi 12771 . . . 4 (1...((#‘𝑅) + 1)) ∈ Fin
13 hashsdom 13170 . . . 4 ((𝑅 ∈ Fin ∧ (1...((#‘𝑅) + 1)) ∈ Fin) → ((#‘𝑅) < (#‘(1...((#‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((#‘𝑅) + 1))))
141, 12, 13sylancl 694 . . 3 (𝜑 → ((#‘𝑅) < (#‘(1...((#‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((#‘𝑅) + 1))))
1511, 14mpbid 222 . 2 (𝜑𝑅 ≺ (1...((#‘𝑅) + 1)))
16 vdwlem12.f . . . . 5 (𝜑𝐹:(1...((#‘𝑅) + 1))⟶𝑅)
17 fveq2 6191 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
18 fveq2 6191 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
1917, 18eqeqan12d 2638 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑥) = (𝐹𝑦)))
20 eqeq12 2635 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝑧 = 𝑤𝑥 = 𝑦))
2119, 20imbi12d 334 . . . . . . 7 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
22 fveq2 6191 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
23 fveq2 6191 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
2422, 23eqeqan12d 2638 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑦) = (𝐹𝑥)))
25 eqcom 2629 . . . . . . . . 9 ((𝐹𝑦) = (𝐹𝑥) ↔ (𝐹𝑥) = (𝐹𝑦))
2624, 25syl6bb 276 . . . . . . . 8 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑥) = (𝐹𝑦)))
27 eqeq12 2635 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝑧 = 𝑤𝑦 = 𝑥))
28 eqcom 2629 . . . . . . . . 9 (𝑦 = 𝑥𝑥 = 𝑦)
2927, 28syl6bb 276 . . . . . . . 8 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝑧 = 𝑤𝑥 = 𝑦))
3026, 29imbi12d 334 . . . . . . 7 ((𝑧 = 𝑦𝑤 = 𝑥) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
31 elfznn 12370 . . . . . . . . . 10 (𝑥 ∈ (1...((#‘𝑅) + 1)) → 𝑥 ∈ ℕ)
3231nnred 11035 . . . . . . . . 9 (𝑥 ∈ (1...((#‘𝑅) + 1)) → 𝑥 ∈ ℝ)
3332ssriv 3607 . . . . . . . 8 (1...((#‘𝑅) + 1)) ⊆ ℝ
3433a1i 11 . . . . . . 7 (𝜑 → (1...((#‘𝑅) + 1)) ⊆ ℝ)
35 biidd 252 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
36 simplr3 1105 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥𝑦)
37 vdwlem12.2 . . . . . . . . . . 11 (𝜑 → ¬ 2 MonoAP 𝐹)
3837ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 2 MonoAP 𝐹)
39 3simpa 1058 . . . . . . . . . . . 12 ((𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦) → (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1))))
40 simplrl 800 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (1...((#‘𝑅) + 1)))
4140, 31syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℕ)
42 simprr 796 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
43 simplrr 801 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (1...((#‘𝑅) + 1)))
44 elfznn 12370 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...((#‘𝑅) + 1)) → 𝑦 ∈ ℕ)
4543, 44syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℕ)
46 nnsub 11059 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℕ))
4741, 45, 46syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℕ))
4842, 47mpbid 222 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦𝑥) ∈ ℕ)
49 df-2 11079 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
5049fveq2i 6194 . . . . . . . . . . . . . . . . . 18 (AP‘2) = (AP‘(1 + 1))
5150oveqi 6663 . . . . . . . . . . . . . . . . 17 (𝑥(AP‘2)(𝑦𝑥)) = (𝑥(AP‘(1 + 1))(𝑦𝑥))
52 1nn0 11308 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
5352a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 1 ∈ ℕ0)
54 vdwapun 15678 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℕ0𝑥 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ) → (𝑥(AP‘(1 + 1))(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
5553, 41, 48, 54syl3anc 1326 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘(1 + 1))(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
5651, 55syl5eq 2668 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
57 simprl 794 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) = (𝐹𝑦))
5816ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝐹:(1...((#‘𝑅) + 1))⟶𝑅)
59 ffn 6045 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:(1...((#‘𝑅) + 1))⟶𝑅𝐹 Fn (1...((#‘𝑅) + 1)))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝐹 Fn (1...((#‘𝑅) + 1)))
61 fniniseg 6338 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn (1...((#‘𝑅) + 1)) → (𝑥 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ (𝐹𝑥) = (𝐹𝑦))))
6260, 61syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ (𝐹𝑥) = (𝐹𝑦))))
6340, 57, 62mpbir2and 957 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (𝐹 “ {(𝐹𝑦)}))
6463snssd 4340 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → {𝑥} ⊆ (𝐹 “ {(𝐹𝑦)}))
6541nncnd 11036 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
6645nncnd 11036 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℂ)
6765, 66pncan3d 10395 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 + (𝑦𝑥)) = 𝑦)
6867oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) = (𝑦(AP‘1)(𝑦𝑥)))
69 vdwap1 15681 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ) → (𝑦(AP‘1)(𝑦𝑥)) = {𝑦})
7045, 48, 69syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦(AP‘1)(𝑦𝑥)) = {𝑦})
7168, 70eqtrd 2656 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) = {𝑦})
72 eqidd 2623 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) = (𝐹𝑦))
73 fniniseg 6338 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn (1...((#‘𝑅) + 1)) → (𝑦 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ (𝐹𝑦) = (𝐹𝑦))))
7460, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ (𝐹𝑦) = (𝐹𝑦))))
7543, 72, 74mpbir2and 957 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (𝐹 “ {(𝐹𝑦)}))
7675snssd 4340 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → {𝑦} ⊆ (𝐹 “ {(𝐹𝑦)}))
7771, 76eqsstrd 3639 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)}))
7864, 77unssd 3789 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))) ⊆ (𝐹 “ {(𝐹𝑦)}))
7956, 78eqsstrd 3639 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)}))
80 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → (𝑎(AP‘2)𝑑) = (𝑥(AP‘2)𝑑))
8180sseq1d 3632 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → ((𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
82 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑦𝑥) → (𝑥(AP‘2)𝑑) = (𝑥(AP‘2)(𝑦𝑥)))
8382sseq1d 3632 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑦𝑥) → ((𝑥(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)})))
8481, 83rspc2ev 3324 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ ∧ (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}))
8541, 48, 79, 84syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}))
86 fvex 6201 . . . . . . . . . . . . . . 15 (𝐹𝑦) ∈ V
87 sneq 4187 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝐹𝑦) → {𝑐} = {(𝐹𝑦)})
8887imaeq2d 5466 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑦) → (𝐹 “ {𝑐}) = (𝐹 “ {(𝐹𝑦)}))
8988sseq2d 3633 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑦) → ((𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
90892rexbidv 3057 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑦) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
9186, 90spcev 3300 . . . . . . . . . . . . . 14 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}))
9285, 91syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}))
93 ovex 6678 . . . . . . . . . . . . . 14 (1...((#‘𝑅) + 1)) ∈ V
94 2nn0 11309 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
9594a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℕ0)
9693, 95, 58vdwmc 15682 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (2 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐})))
9792, 96mpbird 247 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹)
9839, 97sylanl2 683 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹)
9998expr 643 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥 < 𝑦 → 2 MonoAP 𝐹))
10038, 99mtod 189 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 𝑥 < 𝑦)
101 simplr1 1103 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ (1...((#‘𝑅) + 1)))
102101, 32syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ ℝ)
103 simplr2 1104 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ (1...((#‘𝑅) + 1)))
10433, 103sseldi 3601 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ ℝ)
105102, 104eqleltd 10181 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥 = 𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 < 𝑦)))
10636, 100, 105mpbir2and 957 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
107106ex 450 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
10821, 30, 34, 35, 107wlogle 10561 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
109108ralrimivva 2971 . . . . 5 (𝜑 → ∀𝑥 ∈ (1...((#‘𝑅) + 1))∀𝑦 ∈ (1...((#‘𝑅) + 1))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
110 dff13 6512 . . . . 5 (𝐹:(1...((#‘𝑅) + 1))–1-1𝑅 ↔ (𝐹:(1...((#‘𝑅) + 1))⟶𝑅 ∧ ∀𝑥 ∈ (1...((#‘𝑅) + 1))∀𝑦 ∈ (1...((#‘𝑅) + 1))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
11116, 109, 110sylanbrc 698 . . . 4 (𝜑𝐹:(1...((#‘𝑅) + 1))–1-1𝑅)
112 f1domg 7975 . . . 4 (𝑅 ∈ Fin → (𝐹:(1...((#‘𝑅) + 1))–1-1𝑅 → (1...((#‘𝑅) + 1)) ≼ 𝑅))
1131, 111, 112sylc 65 . . 3 (𝜑 → (1...((#‘𝑅) + 1)) ≼ 𝑅)
114 domnsym 8086 . . 3 ((1...((#‘𝑅) + 1)) ≼ 𝑅 → ¬ 𝑅 ≺ (1...((#‘𝑅) + 1)))
115113, 114syl 17 . 2 (𝜑 → ¬ 𝑅 ≺ (1...((#‘𝑅) + 1)))
11615, 115pm2.65i 185 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  cun 3572  wss 3574  {csn 4177   class class class wbr 4653  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  cdom 7953  csdm 7954  Fincfn 7955  cr 9935  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  2c2 11070  0cn0 11292  ...cfz 12326  #chash 13117  APcvdwa 15669   MonoAP cvdwm 15670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-vdwap 15672  df-vdwmc 15673
This theorem is referenced by:  vdwlem13  15697
  Copyright terms: Public domain W3C validator