MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem4 Structured version   Visualization version   GIF version

Theorem faclbnd4lem4 13083
Description: Lemma for faclbnd4 13084. Prove the 0 < 𝑁 case by induction on 𝐾. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd4lem4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))

Proof of Theorem faclbnd4lem4
Dummy variables 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛𝑗) = (𝑚𝑗))
2 oveq2 6658 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑀𝑛) = (𝑀𝑚))
31, 2oveq12d 6668 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑛𝑗) · (𝑀𝑛)) = ((𝑚𝑗) · (𝑀𝑚)))
4 fveq2 6191 . . . . . . . . . . 11 (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚))
54oveq2d 6666 . . . . . . . . . 10 (𝑛 = 𝑚 → (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)))
63, 5breq12d 4666 . . . . . . . . 9 (𝑛 = 𝑚 → (((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) ↔ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚))))
76cbvralv 3171 . . . . . . . 8 (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)))
8 nnre 11027 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9 1re 10039 . . . . . . . . . . . . . 14 1 ∈ ℝ
10 lelttric 10144 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑛 ≤ 1 ∨ 1 < 𝑛))
118, 9, 10sylancl 694 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ≤ 1 ∨ 1 < 𝑛))
1211ancli 574 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∨ 1 < 𝑛)))
13 andi 911 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∨ 1 < 𝑛)) ↔ ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛)))
1412, 13sylib 208 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛)))
15 nnge1 11046 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 1 ≤ 𝑛)
16 letri3 10123 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑛 = 1 ↔ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)))
178, 9, 16sylancl 694 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑛 = 1 ↔ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)))
1817biimpar 502 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)) → 𝑛 = 1)
1918anassrs 680 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∧ 1 ≤ 𝑛) → 𝑛 = 1)
2015, 19mpidan 704 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) → 𝑛 = 1)
21 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
22 1m1e0 11089 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
2321, 22syl6eq 2672 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 − 1) = 0)
2420, 23syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) → (𝑛 − 1) = 0)
25 faclbnd4lem3 13082 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 − 1) = 0) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
2624, 25sylan2 491 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 1)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
2726a1d 25 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 1)) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
28 1nn 11031 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
29 nnsub 11059 . . . . . . . . . . . . . . . 16 ((1 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℕ))
3028, 29mpan 706 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℕ))
3130biimpa 501 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 1 < 𝑛) → (𝑛 − 1) ∈ ℕ)
32 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (𝑚𝑗) = ((𝑛 − 1)↑𝑗))
33 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (𝑀𝑚) = (𝑀↑(𝑛 − 1)))
3432, 33oveq12d 6668 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → ((𝑚𝑗) · (𝑀𝑚)) = (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))))
35 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (!‘𝑚) = (!‘(𝑛 − 1)))
3635oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
3734, 36breq12d 4666 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 − 1) → (((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) ↔ (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
3837rspcv 3305 . . . . . . . . . . . . . 14 ((𝑛 − 1) ∈ ℕ → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
3931, 38syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 1 < 𝑛) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4039adantl 482 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 1 < 𝑛)) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4127, 40jaodan 826 . . . . . . . . . . 11 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛))) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4214, 41sylan2 491 . . . . . . . . . 10 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
43 faclbnd4lem2 13081 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0𝑛 ∈ ℕ) → ((((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
44433expa 1265 . . . . . . . . . 10 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4542, 44syld 47 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4645ralrimdva 2969 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
477, 46syl5bi 232 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4847expcom 451 . . . . . 6 (𝑗 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
4948a2d 29 . . . . 5 (𝑗 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))) → (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
50 nnnn0 11299 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
51 faclbnd3 13079 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑀𝑛) ≤ ((𝑀𝑀) · (!‘𝑛)))
5250, 51sylan2 491 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (𝑀𝑛) ≤ ((𝑀𝑀) · (!‘𝑛)))
53 nncn 11028 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
5453exp0d 13002 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛↑0) = 1)
5554oveq1d 6665 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛↑0) · (𝑀𝑛)) = (1 · (𝑀𝑛)))
5655adantl 482 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) = (1 · (𝑀𝑛)))
57 nn0cn 11302 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
58 expcl 12878 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℂ)
5957, 50, 58syl2an 494 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℂ)
6059mulid2d 10058 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (1 · (𝑀𝑛)) = (𝑀𝑛))
6156, 60eqtrd 2656 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) = (𝑀𝑛))
62 sq0 12955 . . . . . . . . . . . . . 14 (0↑2) = 0
6362oveq2i 6661 . . . . . . . . . . . . 13 (2↑(0↑2)) = (2↑0)
64 2cn 11091 . . . . . . . . . . . . . 14 2 ∈ ℂ
65 exp0 12864 . . . . . . . . . . . . . 14 (2 ∈ ℂ → (2↑0) = 1)
6664, 65ax-mp 5 . . . . . . . . . . . . 13 (2↑0) = 1
6763, 66eqtri 2644 . . . . . . . . . . . 12 (2↑(0↑2)) = 1
6867a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (2↑(0↑2)) = 1)
6957addid1d 10236 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀)
7069oveq2d 6666 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝑀↑(𝑀 + 0)) = (𝑀𝑀))
7168, 70oveq12d 6668 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) = (1 · (𝑀𝑀)))
72 expcl 12878 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑀𝑀) ∈ ℂ)
7357, 72mpancom 703 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝑀𝑀) ∈ ℂ)
7473mulid2d 10058 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (1 · (𝑀𝑀)) = (𝑀𝑀))
7571, 74eqtrd 2656 . . . . . . . . 9 (𝑀 ∈ ℕ0 → ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) = (𝑀𝑀))
7675oveq1d 6665 . . . . . . . 8 (𝑀 ∈ ℕ0 → (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)) = ((𝑀𝑀) · (!‘𝑛)))
7776adantr 481 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)) = ((𝑀𝑀) · (!‘𝑛)))
7852, 61, 773brtr4d 4685 . . . . . 6 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
7978ralrimiva 2966 . . . . 5 (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
80 oveq2 6658 . . . . . . . . 9 (𝑚 = 0 → (𝑛𝑚) = (𝑛↑0))
8180oveq1d 6665 . . . . . . . 8 (𝑚 = 0 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛↑0) · (𝑀𝑛)))
82 oveq1 6657 . . . . . . . . . . 11 (𝑚 = 0 → (𝑚↑2) = (0↑2))
8382oveq2d 6666 . . . . . . . . . 10 (𝑚 = 0 → (2↑(𝑚↑2)) = (2↑(0↑2)))
84 oveq2 6658 . . . . . . . . . . 11 (𝑚 = 0 → (𝑀 + 𝑚) = (𝑀 + 0))
8584oveq2d 6666 . . . . . . . . . 10 (𝑚 = 0 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 0)))
8683, 85oveq12d 6668 . . . . . . . . 9 (𝑚 = 0 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))))
8786oveq1d 6665 . . . . . . . 8 (𝑚 = 0 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
8881, 87breq12d 4666 . . . . . . 7 (𝑚 = 0 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛))))
8988ralbidv 2986 . . . . . 6 (𝑚 = 0 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛))))
9089imbi2d 330 . . . . 5 (𝑚 = 0 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))))
91 oveq2 6658 . . . . . . . . 9 (𝑚 = 𝑗 → (𝑛𝑚) = (𝑛𝑗))
9291oveq1d 6665 . . . . . . . 8 (𝑚 = 𝑗 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛𝑗) · (𝑀𝑛)))
93 oveq1 6657 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑚↑2) = (𝑗↑2))
9493oveq2d 6666 . . . . . . . . . 10 (𝑚 = 𝑗 → (2↑(𝑚↑2)) = (2↑(𝑗↑2)))
95 oveq2 6658 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑀 + 𝑚) = (𝑀 + 𝑗))
9695oveq2d 6666 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 𝑗)))
9794, 96oveq12d 6668 . . . . . . . . 9 (𝑚 = 𝑗 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))))
9897oveq1d 6665 . . . . . . . 8 (𝑚 = 𝑗 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)))
9992, 98breq12d 4666 . . . . . . 7 (𝑚 = 𝑗 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))))
10099ralbidv 2986 . . . . . 6 (𝑚 = 𝑗 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))))
101100imbi2d 330 . . . . 5 (𝑚 = 𝑗 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)))))
102 oveq2 6658 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → (𝑛𝑚) = (𝑛↑(𝑗 + 1)))
103102oveq1d 6665 . . . . . . . 8 (𝑚 = (𝑗 + 1) → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)))
104 oveq1 6657 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑚↑2) = ((𝑗 + 1)↑2))
105104oveq2d 6666 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (2↑(𝑚↑2)) = (2↑((𝑗 + 1)↑2)))
106 oveq2 6658 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑀 + 𝑚) = (𝑀 + (𝑗 + 1)))
107106oveq2d 6666 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + (𝑗 + 1))))
108105, 107oveq12d 6668 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))))
109108oveq1d 6665 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))
110103, 109breq12d 4666 . . . . . . 7 (𝑚 = (𝑗 + 1) → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
111110ralbidv 2986 . . . . . 6 (𝑚 = (𝑗 + 1) → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
112111imbi2d 330 . . . . 5 (𝑚 = (𝑗 + 1) → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
113 oveq2 6658 . . . . . . . . 9 (𝑚 = 𝐾 → (𝑛𝑚) = (𝑛𝐾))
114113oveq1d 6665 . . . . . . . 8 (𝑚 = 𝐾 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛𝐾) · (𝑀𝑛)))
115 oveq1 6657 . . . . . . . . . . 11 (𝑚 = 𝐾 → (𝑚↑2) = (𝐾↑2))
116115oveq2d 6666 . . . . . . . . . 10 (𝑚 = 𝐾 → (2↑(𝑚↑2)) = (2↑(𝐾↑2)))
117 oveq2 6658 . . . . . . . . . . 11 (𝑚 = 𝐾 → (𝑀 + 𝑚) = (𝑀 + 𝐾))
118117oveq2d 6666 . . . . . . . . . 10 (𝑚 = 𝐾 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 𝐾)))
119116, 118oveq12d 6668 . . . . . . . . 9 (𝑚 = 𝐾 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
120119oveq1d 6665 . . . . . . . 8 (𝑚 = 𝐾 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))
121114, 120breq12d 4666 . . . . . . 7 (𝑚 = 𝐾 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
122121ralbidv 2986 . . . . . 6 (𝑚 = 𝐾 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
123122imbi2d 330 . . . . 5 (𝑚 = 𝐾 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))))
12449, 79, 90, 101, 112, 123nn0indALT 11473 . . . 4 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
125124imp 445 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))
126 oveq1 6657 . . . . . 6 (𝑛 = 𝑁 → (𝑛𝐾) = (𝑁𝐾))
127 oveq2 6658 . . . . . 6 (𝑛 = 𝑁 → (𝑀𝑛) = (𝑀𝑁))
128126, 127oveq12d 6668 . . . . 5 (𝑛 = 𝑁 → ((𝑛𝐾) · (𝑀𝑛)) = ((𝑁𝐾) · (𝑀𝑁)))
129 fveq2 6191 . . . . . 6 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
130129oveq2d 6666 . . . . 5 (𝑛 = 𝑁 → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
131128, 130breq12d 4666 . . . 4 (𝑛 = 𝑁 → (((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)) ↔ ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
132131rspcva 3307 . . 3 ((𝑁 ∈ ℕ ∧ ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
133125, 132sylan2 491 . 2 ((𝑁 ∈ ℕ ∧ (𝐾 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
1341333impb 1260 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  cn 11020  2c2 11070  0cn0 11292  cexp 12860  !cfa 13060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-fac 13061
This theorem is referenced by:  faclbnd4  13084
  Copyright terms: Public domain W3C validator