MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd Structured version   Visualization version   GIF version

Theorem odadd 18253
Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))

Proof of Theorem odadd
StepHypRef Expression
1 simpl1 1064 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐺 ∈ Abel)
2 ablgrp 18198 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐺 ∈ Grp)
4 simpl2 1065 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐴𝑋)
5 simpl3 1066 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → 𝐵𝑋)
6 odadd1.2 . . . . 5 𝑋 = (Base‘𝐺)
7 odadd1.3 . . . . 5 + = (+g𝐺)
86, 7grpcl 17430 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
93, 4, 5, 8syl3anc 1326 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝐴 + 𝐵) ∈ 𝑋)
10 odadd1.1 . . . 4 𝑂 = (od‘𝐺)
116, 10odcl 17955 . . 3 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
129, 11syl 17 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
136, 10odcl 17955 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
144, 13syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂𝐴) ∈ ℕ0)
156, 10odcl 17955 . . . 4 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
165, 15syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂𝐵) ∈ ℕ0)
1714, 16nn0mulcld 11356 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℕ0)
18 simpr 477 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) gcd (𝑂𝐵)) = 1)
1918oveq2d 6666 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · 1))
2012nn0cnd 11353 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∈ ℂ)
2120mulid1d 10057 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · 1) = (𝑂‘(𝐴 + 𝐵)))
2219, 21eqtrd 2656 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂‘(𝐴 + 𝐵)))
2310, 6, 7odadd1 18251 . . . 4 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2423adantr 481 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2522, 24eqbrtrrd 4677 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)))
2610, 6, 7odadd2 18252 . . . 4 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
2726adantr 481 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
2818oveq1d 6665 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = (1↑2))
29 sq1 12958 . . . . . 6 (1↑2) = 1
3028, 29syl6eq 2672 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = 1)
3130oveq2d 6666 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂‘(𝐴 + 𝐵)) · 1))
3231, 21eqtrd 2656 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = (𝑂‘(𝐴 + 𝐵)))
3327, 32breqtrd 4679 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → ((𝑂𝐴) · (𝑂𝐵)) ∥ (𝑂‘(𝐴 + 𝐵)))
34 dvdseq 15036 . 2 ((((𝑂‘(𝐴 + 𝐵)) ∈ ℕ0 ∧ ((𝑂𝐴) · (𝑂𝐵)) ∈ ℕ0) ∧ ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ∧ ((𝑂𝐴) · (𝑂𝐵)) ∥ (𝑂‘(𝐴 + 𝐵)))) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))
3512, 17, 25, 33, 34syl22anc 1327 1 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂𝐴) · (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  1c1 9937   · cmul 9941  2c2 11070  0cn0 11292  cexp 12860  cdvds 14983   gcd cgcd 15216  Basecbs 15857  +gcplusg 15941  Grpcgrp 17422  odcod 17944  Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-od 17948  df-cmn 18195  df-abl 18196
This theorem is referenced by:  gexexlem  18255
  Copyright terms: Public domain W3C validator