MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd2 Structured version   Visualization version   GIF version

Theorem odadd2 18252
Description: The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd2 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))

Proof of Theorem odadd2
StepHypRef Expression
1 odadd1.2 . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 odadd1.1 . . . . . . . . 9 𝑂 = (od‘𝐺)
31, 2odcl 17955 . . . . . . . 8 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
433ad2ant2 1083 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℕ0)
54nn0zd 11480 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℤ)
61, 2odcl 17955 . . . . . . . 8 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
763ad2ant3 1084 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℕ0)
87nn0zd 11480 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℤ)
95, 8zmulcld 11488 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
109adantr 481 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
11 dvds0 14997 . . . 4 (((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ → ((𝑂𝐴) · (𝑂𝐵)) ∥ 0)
1210, 11syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ 0)
13 simpr 477 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) gcd (𝑂𝐵)) = 0)
1413sq0id 12957 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = 0)
1514oveq2d 6666 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂‘(𝐴 + 𝐵)) · 0))
16 ablgrp 18198 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
17 odadd1.3 . . . . . . . . . . 11 + = (+g𝐺)
181, 17grpcl 17430 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
1916, 18syl3an1 1359 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
201, 2odcl 17955 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
2221nn0zd 11480 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
2322adantr 481 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
2423zcnd 11483 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℂ)
2524mul01d 10235 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · 0) = 0)
2615, 25eqtrd 2656 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = 0)
2712, 26breqtrrd 4681 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
285adantr 481 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℤ)
298adantr 481 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℤ)
3028, 29gcdcld 15230 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0)
3130nn0cnd 11353 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℂ)
3231sqvald 13005 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
3332oveq2d 6666 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵)))))
34 gcddvds 15225 . . . . . . . . 9 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3528, 29, 34syl2anc 693 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3635simpld 475 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴))
3730nn0zd 11480 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
38 simpr 477 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)
39 dvdsval2 14986 . . . . . . . 8 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐴) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4037, 38, 28, 39syl3anc 1326 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4136, 40mpbid 222 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
4241zcnd 11483 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℂ)
4335simprd 479 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵))
44 dvdsval2 14986 . . . . . . . 8 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4537, 38, 29, 44syl3anc 1326 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4643, 45mpbid 222 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
4746zcnd 11483 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℂ)
4842, 31, 47, 31mul4d 10248 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) · (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵)))))
4928zcnd 11483 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℂ)
5049, 31, 38divcan1d 10802 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂𝐴))
5129zcnd 11483 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℂ)
5251, 31, 38divcan1d 10802 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂𝐵))
5350, 52oveq12d 6668 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) · (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((𝑂𝐴) · (𝑂𝐵)))
5433, 48, 533eqtr2d 2662 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂𝐴) · (𝑂𝐵)))
5522adantr 481 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
56 dvdsmul2 15004 . . . . . . . . . 10 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
5755, 28, 56syl2anc 693 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
58 simpl1 1064 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Abel)
5955, 29zmulcld 11488 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ)
60 simpl2 1065 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐴𝑋)
61 simpl3 1066 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐵𝑋)
62 eqid 2622 . . . . . . . . . . . . . 14 (.g𝐺) = (.g𝐺)
631, 62, 17mulgdi 18232 . . . . . . . . . . . . 13 ((𝐺 ∈ Abel ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)))
6458, 59, 60, 61, 63syl13anc 1328 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)))
65 dvdsmul2 15004 . . . . . . . . . . . . . . 15 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
6655, 29, 65syl2anc 693 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
6758, 16syl 17 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Grp)
68 eqid 2622 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
691, 2, 62, 68oddvds 17966 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺)))
7067, 61, 59, 69syl3anc 1326 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺)))
7166, 70mpbid 222 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺))
7271oveq2d 6666 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)))
7364, 72eqtrd 2656 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)))
74 dvdsmul1 15003 . . . . . . . . . . . . 13 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
7555, 29, 74syl2anc 693 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
7619adantr 481 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝐴 + 𝐵) ∈ 𝑋)
771, 2, 62, 68oddvds 17966 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
7867, 76, 59, 77syl3anc 1326 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
7975, 78mpbid 222 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
801, 62mulgcl 17559 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ ∧ 𝐴𝑋) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋)
8167, 59, 60, 80syl3anc 1326 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋)
821, 17, 68grprid 17453 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴))
8367, 81, 82syl2anc 693 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴))
8473, 79, 833eqtr3rd 2665 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺))
851, 2, 62, 68oddvds 17966 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺)))
8667, 60, 59, 85syl3anc 1326 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺)))
8784, 86mpbird 247 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
8855, 28zmulcld 11488 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ)
89 dvdsgcd 15261 . . . . . . . . . 10 (((𝑂𝐴) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
9028, 88, 59, 89syl3anc 1326 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
9157, 87, 90mp2and 715 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))))
9221adantr 481 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
93 mulgcd 15265 . . . . . . . . 9 (((𝑂‘(𝐴 + 𝐵)) ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9492, 28, 29, 93syl3anc 1326 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9591, 94breqtrd 4679 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9650, 95eqbrtrd 4675 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
97 dvdsmulcr 15011 . . . . . . 7 ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
9841, 55, 37, 38, 97syl112anc 1330 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
9996, 98mpbid 222 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)))
1001, 62, 17mulgdi 18232 . . . . . . . . . . . . 13 ((𝐺 ∈ Abel ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
10158, 88, 60, 61, 100syl13anc 1328 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
1021, 2, 62, 68oddvds 17966 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺)))
10367, 60, 88, 102syl3anc 1326 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺)))
10457, 103mpbid 222 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺))
105104oveq1d 6665 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
106101, 105eqtrd 2656 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
107 dvdsmul1 15003 . . . . . . . . . . . . 13 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
10855, 28, 107syl2anc 693 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
1091, 2, 62, 68oddvds 17966 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
11067, 76, 88, 109syl3anc 1326 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
111108, 110mpbid 222 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
1121, 62mulgcl 17559 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ 𝐵𝑋) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋)
11367, 88, 61, 112syl3anc 1326 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋)
1141, 17, 68grplid 17452 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋) → ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵))
11567, 113, 114syl2anc 693 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵))
116106, 111, 1153eqtr3rd 2665 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺))
1171, 2, 62, 68oddvds 17966 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺)))
11867, 61, 88, 117syl3anc 1326 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺)))
119116, 118mpbird 247 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
120 dvdsgcd 15261 . . . . . . . . . 10 (((𝑂𝐵) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
12129, 88, 59, 120syl3anc 1326 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
122119, 66, 121mp2and 715 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))))
123122, 94breqtrd 4679 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
12452, 123eqbrtrd 4675 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
125 dvdsmulcr 15011 . . . . . . 7 ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
12646, 55, 37, 38, 125syl112anc 1330 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
127124, 126mpbid 222 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)))
12841, 46gcdcld 15230 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℕ0)
129128nn0cnd 11353 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℂ)
130 1cnd 10056 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 1 ∈ ℂ)
13131mulid2d 10058 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (1 · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) gcd (𝑂𝐵)))
13250, 52oveq12d 6668 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((𝑂𝐴) gcd (𝑂𝐵)))
133 mulgcdr 15267 . . . . . . . . 9 ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))))
13441, 46, 30, 133syl3anc 1326 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))))
135131, 132, 1343eqtr2rd 2663 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (1 · ((𝑂𝐴) gcd (𝑂𝐵))))
136129, 130, 31, 38, 135mulcan2ad 10663 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) = 1)
137 coprmdvds2 15368 . . . . . 6 (((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ) ∧ (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) = 1) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)) ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵))))
13841, 46, 55, 136, 137syl31anc 1329 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)) ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵))))
13999, 127, 138mp2and 715 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)))
14041, 46zmulcld 11488 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℤ)
141 zsqcl 12934 . . . . . 6 (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ → (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ)
14237, 141syl 17 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ)
143 dvdsmulc 15009 . . . . 5 (((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2))))
144140, 55, 142, 143syl3anc 1326 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2))))
145139, 144mpd 15 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
14654, 145eqbrtrrd 4677 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
14727, 146pm2.61dane 2881 1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   · cmul 9941   / cdiv 10684  2c2 11070  0cn0 11292  cz 11377  cexp 12860  cdvds 14983   gcd cgcd 15216  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  .gcmg 17540  odcod 17944  Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-od 17948  df-cmn 18195  df-abl 18196
This theorem is referenced by:  odadd  18253
  Copyright terms: Public domain W3C validator