| Step | Hyp | Ref
| Expression |
| 1 | | gexexlem.3 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 2 | | gexex.1 |
. . . 4
⊢ 𝑋 = (Base‘𝐺) |
| 3 | | gexex.3 |
. . . 4
⊢ 𝑂 = (od‘𝐺) |
| 4 | 2, 3 | odcl 17955 |
. . 3
⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈
ℕ0) |
| 5 | 1, 4 | syl 17 |
. 2
⊢ (𝜑 → (𝑂‘𝐴) ∈
ℕ0) |
| 6 | | gexexlem.2 |
. . 3
⊢ (𝜑 → 𝐸 ∈ ℕ) |
| 7 | 6 | nnnn0d 11351 |
. 2
⊢ (𝜑 → 𝐸 ∈
ℕ0) |
| 8 | | gexexlem.1 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 9 | | ablgrp 18198 |
. . . 4
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 11 | | gexex.2 |
. . . 4
⊢ 𝐸 = (gEx‘𝐺) |
| 12 | 2, 11, 3 | gexod 18001 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ 𝐸) |
| 13 | 10, 1, 12 | syl2anc 693 |
. 2
⊢ (𝜑 → (𝑂‘𝐴) ∥ 𝐸) |
| 14 | 8 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝐺 ∈ Abel) |
| 15 | 10 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝐺 ∈ Grp) |
| 16 | | prmnn 15388 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
| 17 | 16 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ) |
| 18 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ) |
| 19 | 6 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝐸 ∈ ℕ) |
| 20 | 1 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ 𝑋) |
| 21 | 2, 11, 3 | gexnnod 18003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
| 22 | 15, 19, 20, 21 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝐴) ∈ ℕ) |
| 23 | 18, 22 | pccld 15555 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂‘𝐴)) ∈
ℕ0) |
| 24 | 17, 23 | nnexpcld 13030 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℕ) |
| 25 | 24 | nnzd 11481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℤ) |
| 26 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(.g‘𝐺) = (.g‘𝐺) |
| 27 | 2, 26 | mulgcl 17559 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℤ ∧ 𝐴 ∈ 𝑋) → ((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴) ∈ 𝑋) |
| 28 | 15, 25, 20, 27 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴) ∈ 𝑋) |
| 29 | | simplr 792 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑥 ∈ 𝑋) |
| 30 | 2, 11, 3 | gexnnod 18003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝑥 ∈ 𝑋) → (𝑂‘𝑥) ∈ ℕ) |
| 31 | 15, 19, 29, 30 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝑥) ∈ ℕ) |
| 32 | | pcdvds 15568 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ ℙ ∧ (𝑂‘𝑥) ∈ ℕ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∥ (𝑂‘𝑥)) |
| 33 | 18, 31, 32 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∥ (𝑂‘𝑥)) |
| 34 | 18, 31 | pccld 15555 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂‘𝑥)) ∈
ℕ0) |
| 35 | 17, 34 | nnexpcld 13030 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℕ) |
| 36 | | nndivdvds 14989 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑂‘𝑥) ∈ ℕ ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℕ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∥ (𝑂‘𝑥) ↔ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℕ)) |
| 37 | 31, 35, 36 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∥ (𝑂‘𝑥) ↔ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℕ)) |
| 38 | 33, 37 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℕ) |
| 39 | 38 | nnzd 11481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℤ) |
| 40 | 2, 26 | mulgcl 17559 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℤ ∧ 𝑥 ∈ 𝑋) → (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥) ∈ 𝑋) |
| 41 | 15, 39, 29, 40 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥) ∈ 𝑋) |
| 42 | 2, 3, 26 | odmulg 17973 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℤ) → (𝑂‘𝐴) = (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)))) |
| 43 | 15, 20, 25, 42 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝐴) = (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)))) |
| 44 | | pcdvds 15568 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ ℙ ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴)) |
| 45 | 18, 22, 44 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴)) |
| 46 | | gcdeq 15272 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℕ ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) = (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴))) |
| 47 | 24, 22, 46 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) = (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴))) |
| 48 | 45, 47 | mpbird 247 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) = (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) |
| 49 | 48 | oveq1d 6665 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴))) = ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)))) |
| 50 | 43, 49 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝐴) = ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)))) |
| 51 | 50 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) = (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴))) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
| 52 | 2, 11, 3 | gexnnod 18003 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴) ∈ 𝑋) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) ∈ ℕ) |
| 53 | 15, 19, 28, 52 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) ∈ ℕ) |
| 54 | 53 | nncnd 11036 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) ∈ ℂ) |
| 55 | 24 | nncnd 11036 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℂ) |
| 56 | 24 | nnne0d 11065 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ≠ 0) |
| 57 | 54, 55, 56 | divcan3d 10806 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴))) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) = (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴))) |
| 58 | 51, 57 | eqtr2d 2657 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) = ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
| 59 | 2, 11, 3 | gexnnod 18003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥) ∈ 𝑋) → (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) ∈ ℕ) |
| 60 | 15, 19, 41, 59 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) ∈ ℕ) |
| 61 | 60 | nncnd 11036 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) ∈ ℂ) |
| 62 | 35 | nncnd 11036 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℂ) |
| 63 | 38 | nncnd 11036 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℂ) |
| 64 | 38 | nnne0d 11065 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ≠ 0) |
| 65 | 31 | nncnd 11036 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝑥) ∈ ℂ) |
| 66 | 35 | nnne0d 11065 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≠ 0) |
| 67 | 65, 62, 66 | divcan1d 10802 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) = (𝑂‘𝑥)) |
| 68 | 2, 3, 26 | odmulg 17973 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℤ) → (𝑂‘𝑥) = ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
| 69 | 15, 29, 39, 68 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝑥) = ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
| 70 | 35 | nnzd 11481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℤ) |
| 71 | | dvdsmul1 15003 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℤ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∥ (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
| 72 | 39, 70, 71 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∥ (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
| 73 | 72, 67 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∥ (𝑂‘𝑥)) |
| 74 | | gcdeq 15272 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℕ ∧ (𝑂‘𝑥) ∈ ℕ) → ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) = ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ↔ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∥ (𝑂‘𝑥))) |
| 75 | 38, 31, 74 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) = ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ↔ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∥ (𝑂‘𝑥))) |
| 76 | 73, 75 | mpbird 247 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) = ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
| 77 | 76 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
| 78 | 67, 69, 77 | 3eqtrrd 2661 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
| 79 | 61, 62, 63, 64, 78 | mulcanad 10662 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) = (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) |
| 80 | 58, 79 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) gcd (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = (((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) gcd (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
| 81 | | nndivdvds 14989 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℕ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℕ)) |
| 82 | 22, 24, 81 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℕ)) |
| 83 | 45, 82 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℕ) |
| 84 | 83 | nnzd 11481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℤ) |
| 85 | | gcdcom 15235 |
. . . . . . . . . . . . . 14
⊢ ((((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℤ) → (((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) gcd (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) = ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))))) |
| 86 | 84, 70, 85 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) gcd (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) = ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))))) |
| 87 | | pcndvds2 15572 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ ℙ ∧ (𝑂‘𝐴) ∈ ℕ) → ¬ 𝑝 ∥ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
| 88 | 18, 22, 87 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ¬ 𝑝 ∥ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
| 89 | | coprm 15423 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ ℙ ∧ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℤ) → (¬ 𝑝 ∥ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ↔ (𝑝 gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1)) |
| 90 | 18, 84, 89 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (¬ 𝑝 ∥ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ↔ (𝑝 gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1)) |
| 91 | 88, 90 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1) |
| 92 | | prmz 15389 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
| 93 | 92 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
| 94 | | rpexp1i 15433 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ ℤ ∧ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℤ ∧ (𝑝 pCnt (𝑂‘𝑥)) ∈ ℕ0) → ((𝑝 gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1 → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1)) |
| 95 | 93, 84, 34, 94 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝 gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1 → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1)) |
| 96 | 91, 95 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1) |
| 97 | 80, 86, 96 | 3eqtrd 2660 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) gcd (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = 1) |
| 98 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 99 | 3, 2, 98 | odadd 18253 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Abel ∧ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴) ∈ 𝑋 ∧ (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥) ∈ 𝑋) ∧ ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) gcd (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = 1) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
| 100 | 14, 28, 41, 97, 99 | syl31anc 1329 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
| 101 | 58, 79 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = (((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
| 102 | 100, 101 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = (((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
| 103 | 2, 98 | grpcl 17430 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴) ∈ 𝑋 ∧ (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥) ∈ 𝑋) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) ∈ 𝑋) |
| 104 | 15, 28, 41, 103 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) ∈ 𝑋) |
| 105 | | gexexlem.4 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑂‘𝑦) ≤ (𝑂‘𝐴)) |
| 106 | 105 | ralrimiva 2966 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑦 ∈ 𝑋 (𝑂‘𝑦) ≤ (𝑂‘𝐴)) |
| 107 | 106 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ∀𝑦 ∈ 𝑋 (𝑂‘𝑦) ≤ (𝑂‘𝐴)) |
| 108 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) → (𝑂‘𝑦) = (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
| 109 | 108 | breq1d 4663 |
. . . . . . . . . . . 12
⊢ (𝑦 = (((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) → ((𝑂‘𝑦) ≤ (𝑂‘𝐴) ↔ (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) ≤ (𝑂‘𝐴))) |
| 110 | 109 | rspcv 3305 |
. . . . . . . . . . 11
⊢ ((((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) ∈ 𝑋 → (∀𝑦 ∈ 𝑋 (𝑂‘𝑦) ≤ (𝑂‘𝐴) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) ≤ (𝑂‘𝐴))) |
| 111 | 104, 107,
110 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) ≤ (𝑂‘𝐴)) |
| 112 | 102, 111 | eqbrtrrd 4677 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ≤ (𝑂‘𝐴)) |
| 113 | 83 | nnred 11035 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℝ) |
| 114 | 22 | nnred 11035 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝐴) ∈ ℝ) |
| 115 | 35 | nnrpd 11870 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈
ℝ+) |
| 116 | 113, 114,
115 | lemuldivd 11921 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ≤ (𝑂‘𝐴) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))))) |
| 117 | 112, 116 | mpbid 222 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
| 118 | | nnrp 11842 |
. . . . . . . . . 10
⊢ ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℕ → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈
ℝ+) |
| 119 | | nnrp 11842 |
. . . . . . . . . 10
⊢ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℕ → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈
ℝ+) |
| 120 | | nnrp 11842 |
. . . . . . . . . 10
⊢ ((𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) ∈
ℝ+) |
| 121 | | rpregt0 11846 |
. . . . . . . . . . 11
⊢ ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℝ+ → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
| 122 | | rpregt0 11846 |
. . . . . . . . . . 11
⊢ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℝ+ →
((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
| 123 | | rpregt0 11846 |
. . . . . . . . . . 11
⊢ ((𝑂‘𝐴) ∈ ℝ+ → ((𝑂‘𝐴) ∈ ℝ ∧ 0 < (𝑂‘𝐴))) |
| 124 | | lediv2 10913 |
. . . . . . . . . . 11
⊢ ((((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∧ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∧ ((𝑂‘𝐴) ∈ ℝ ∧ 0 < (𝑂‘𝐴))) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))))) |
| 125 | 121, 122,
123, 124 | syl3an 1368 |
. . . . . . . . . 10
⊢ (((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℝ+ ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℝ+ ∧ (𝑂‘𝐴) ∈ ℝ+) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))))) |
| 126 | 118, 119,
120, 125 | syl3an 1368 |
. . . . . . . . 9
⊢ (((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℕ ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℕ ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))))) |
| 127 | 35, 24, 22, 126 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))))) |
| 128 | 117, 127 | mpbird 247 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) |
| 129 | 17 | nnred 11035 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ) |
| 130 | 34 | nn0zd 11480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂‘𝑥)) ∈ ℤ) |
| 131 | 23 | nn0zd 11480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂‘𝐴)) ∈ ℤ) |
| 132 | | prmuz2 15408 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
(ℤ≥‘2)) |
| 133 | 132 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈
(ℤ≥‘2)) |
| 134 | | eluz2b2 11761 |
. . . . . . . . . 10
⊢ (𝑝 ∈
(ℤ≥‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝)) |
| 135 | 134 | simprbi 480 |
. . . . . . . . 9
⊢ (𝑝 ∈
(ℤ≥‘2) → 1 < 𝑝) |
| 136 | 133, 135 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 1 < 𝑝) |
| 137 | 129, 130,
131, 136 | leexp2d 13039 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝑂‘𝑥)) ≤ (𝑝 pCnt (𝑂‘𝐴)) ↔ (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
| 138 | 128, 137 | mpbird 247 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂‘𝑥)) ≤ (𝑝 pCnt (𝑂‘𝐴))) |
| 139 | 138 | ralrimiva 2966 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝑂‘𝑥)) ≤ (𝑝 pCnt (𝑂‘𝐴))) |
| 140 | 2, 3 | odcl 17955 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 → (𝑂‘𝑥) ∈
ℕ0) |
| 141 | 140 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑂‘𝑥) ∈
ℕ0) |
| 142 | 141 | nn0zd 11480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑂‘𝑥) ∈ ℤ) |
| 143 | 5 | nn0zd 11480 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘𝐴) ∈ ℤ) |
| 144 | 143 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℤ) |
| 145 | | pc2dvds 15583 |
. . . . . 6
⊢ (((𝑂‘𝑥) ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ) → ((𝑂‘𝑥) ∥ (𝑂‘𝐴) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝑂‘𝑥)) ≤ (𝑝 pCnt (𝑂‘𝐴)))) |
| 146 | 142, 144,
145 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑂‘𝑥) ∥ (𝑂‘𝐴) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝑂‘𝑥)) ≤ (𝑝 pCnt (𝑂‘𝐴)))) |
| 147 | 139, 146 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑂‘𝑥) ∥ (𝑂‘𝐴)) |
| 148 | 147 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∥ (𝑂‘𝐴)) |
| 149 | 2, 11, 3 | gexdvds2 18000 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑂‘𝐴) ∈ ℤ) → (𝐸 ∥ (𝑂‘𝐴) ↔ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∥ (𝑂‘𝐴))) |
| 150 | 10, 143, 149 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝐸 ∥ (𝑂‘𝐴) ↔ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∥ (𝑂‘𝐴))) |
| 151 | 148, 150 | mpbird 247 |
. 2
⊢ (𝜑 → 𝐸 ∥ (𝑂‘𝐴)) |
| 152 | | dvdseq 15036 |
. 2
⊢ ((((𝑂‘𝐴) ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)
∧ ((𝑂‘𝐴) ∥ 𝐸 ∧ 𝐸 ∥ (𝑂‘𝐴))) → (𝑂‘𝐴) = 𝐸) |
| 153 | 5, 7, 13, 151, 152 | syl22anc 1327 |
1
⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) |