![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uzoi | Structured version Visualization version GIF version |
Description: An alternative definition of 𝐺 in terms of df-oi 8415. (Contributed by Mario Carneiro, 2-Jun-2015.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzoi | ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7074 | . . . 4 ⊢ Ord ω | |
2 | om2uz.1 | . . . . 5 ⊢ 𝐶 ∈ ℤ | |
3 | om2uz.2 | . . . . 5 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
4 | 2, 3 | om2uzisoi 12753 | . . . 4 ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) |
5 | 1, 4 | pm3.2i 471 | . . 3 ⊢ (Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) |
6 | ordwe 5736 | . . . . . 6 ⊢ (Ord ω → E We ω) | |
7 | 1, 6 | ax-mp 5 | . . . . 5 ⊢ E We ω |
8 | isowe 6599 | . . . . . 6 ⊢ (𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) → ( E We ω ↔ < We (ℤ≥‘𝐶))) | |
9 | 4, 8 | ax-mp 5 | . . . . 5 ⊢ ( E We ω ↔ < We (ℤ≥‘𝐶)) |
10 | 7, 9 | mpbi 220 | . . . 4 ⊢ < We (ℤ≥‘𝐶) |
11 | fvex 6201 | . . . . 5 ⊢ (ℤ≥‘𝐶) ∈ V | |
12 | exse 5078 | . . . . 5 ⊢ ((ℤ≥‘𝐶) ∈ V → < Se (ℤ≥‘𝐶)) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ < Se (ℤ≥‘𝐶) |
14 | eqid 2622 | . . . . 5 ⊢ OrdIso( < , (ℤ≥‘𝐶)) = OrdIso( < , (ℤ≥‘𝐶)) | |
15 | 14 | oieu 8444 | . . . 4 ⊢ (( < We (ℤ≥‘𝐶) ∧ < Se (ℤ≥‘𝐶)) → ((Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) ↔ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶))))) |
16 | 10, 13, 15 | mp2an 708 | . . 3 ⊢ ((Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) ↔ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)))) |
17 | 5, 16 | mpbi 220 | . 2 ⊢ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶))) |
18 | 17 | simpri 478 | 1 ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ↦ cmpt 4729 E cep 5028 Se wse 5071 We wwe 5072 dom cdm 5114 ↾ cres 5116 Ord word 5722 ‘cfv 5888 Isom wiso 5889 (class class class)co 6650 ωcom 7065 reccrdg 7505 OrdIsocoi 8414 1c1 9937 + caddc 9939 < clt 10074 ℤcz 11377 ℤ≥cuz 11687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-oi 8415 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 |
This theorem is referenced by: ltbwe 19472 |
Copyright terms: Public domain | W3C validator |