MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccofval Structured version   Visualization version   GIF version

Theorem oppccofval 16376
Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcco.b 𝐵 = (Base‘𝐶)
oppcco.c · = (comp‘𝐶)
oppcco.o 𝑂 = (oppCat‘𝐶)
oppcco.x (𝜑𝑋𝐵)
oppcco.y (𝜑𝑌𝐵)
oppcco.z (𝜑𝑍𝐵)
Assertion
Ref Expression
oppccofval (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍) = tpos (⟨𝑍, 𝑌· 𝑋))

Proof of Theorem oppccofval
Dummy variables 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcco.x . . . . 5 (𝜑𝑋𝐵)
2 elfvex 6221 . . . . . 6 (𝑋 ∈ (Base‘𝐶) → 𝐶 ∈ V)
3 oppcco.b . . . . . 6 𝐵 = (Base‘𝐶)
42, 3eleq2s 2719 . . . . 5 (𝑋𝐵𝐶 ∈ V)
5 eqid 2622 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
6 oppcco.c . . . . . 6 · = (comp‘𝐶)
7 oppcco.o . . . . . 6 𝑂 = (oppCat‘𝐶)
83, 5, 6, 7oppcval 16373 . . . . 5 (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
91, 4, 83syl 18 . . . 4 (𝜑𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
109fveq2d 6195 . . 3 (𝜑 → (comp‘𝑂) = (comp‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩)))
11 ovex 6678 . . . 4 (𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) ∈ V
12 fvex 6201 . . . . . . 7 (Base‘𝐶) ∈ V
133, 12eqeltri 2697 . . . . . 6 𝐵 ∈ V
1413, 13xpex 6962 . . . . 5 (𝐵 × 𝐵) ∈ V
1514, 13mpt2ex 7247 . . . 4 (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) ∈ V
16 ccoid 16077 . . . . 5 comp = Slot (comp‘ndx)
1716setsid 15914 . . . 4 (((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) ∈ V ∧ (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) ∈ V) → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) = (comp‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩)))
1811, 15, 17mp2an 708 . . 3 (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) = (comp‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
1910, 18syl6eqr 2674 . 2 (𝜑 → (comp‘𝑂) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))))
20 simprr 796 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
21 simprl 794 . . . . . . 7 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑢 = ⟨𝑋, 𝑌⟩)
2221fveq2d 6195 . . . . . 6 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑢) = (2nd ‘⟨𝑋, 𝑌⟩))
231adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑋𝐵)
24 oppcco.y . . . . . . . 8 (𝜑𝑌𝐵)
2524adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑌𝐵)
26 op2ndg 7181 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2723, 25, 26syl2anc 693 . . . . . 6 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2822, 27eqtrd 2656 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑢) = 𝑌)
2920, 28opeq12d 4410 . . . 4 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ⟨𝑧, (2nd𝑢)⟩ = ⟨𝑍, 𝑌⟩)
3021fveq2d 6195 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑢) = (1st ‘⟨𝑋, 𝑌⟩))
31 op1stg 7180 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
3223, 25, 31syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
3330, 32eqtrd 2656 . . . 4 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑢) = 𝑋)
3429, 33oveq12d 6668 . . 3 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)) = (⟨𝑍, 𝑌· 𝑋))
3534tposeqd 7355 . 2 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)) = tpos (⟨𝑍, 𝑌· 𝑋))
36 opelxpi 5148 . . 3 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
371, 24, 36syl2anc 693 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
38 oppcco.z . 2 (𝜑𝑍𝐵)
39 ovex 6678 . . . 4 (⟨𝑍, 𝑌· 𝑋) ∈ V
4039tposex 7386 . . 3 tpos (⟨𝑍, 𝑌· 𝑋) ∈ V
4140a1i 11 . 2 (𝜑 → tpos (⟨𝑍, 𝑌· 𝑋) ∈ V)
4219, 35, 37, 38, 41ovmpt2d 6788 1 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍) = tpos (⟨𝑍, 𝑌· 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  tpos ctpos 7351  ndxcnx 15854   sSet csts 15855  Basecbs 15857  Hom chom 15952  compcco 15953  oppCatcoppc 16371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-dec 11494  df-ndx 15860  df-slot 15861  df-sets 15864  df-cco 15967  df-oppc 16372
This theorem is referenced by:  oppcco  16377
  Copyright terms: Public domain W3C validator