MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcco Structured version   Visualization version   GIF version

Theorem oppcco 16377
Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcco.b 𝐵 = (Base‘𝐶)
oppcco.c · = (comp‘𝐶)
oppcco.o 𝑂 = (oppCat‘𝐶)
oppcco.x (𝜑𝑋𝐵)
oppcco.y (𝜑𝑌𝐵)
oppcco.z (𝜑𝑍𝐵)
Assertion
Ref Expression
oppcco (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍)𝐹) = (𝐹(⟨𝑍, 𝑌· 𝑋)𝐺))

Proof of Theorem oppcco
StepHypRef Expression
1 oppcco.b . . . 4 𝐵 = (Base‘𝐶)
2 oppcco.c . . . 4 · = (comp‘𝐶)
3 oppcco.o . . . 4 𝑂 = (oppCat‘𝐶)
4 oppcco.x . . . 4 (𝜑𝑋𝐵)
5 oppcco.y . . . 4 (𝜑𝑌𝐵)
6 oppcco.z . . . 4 (𝜑𝑍𝐵)
71, 2, 3, 4, 5, 6oppccofval 16376 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍) = tpos (⟨𝑍, 𝑌· 𝑋))
87oveqd 6667 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍)𝐹) = (𝐺tpos (⟨𝑍, 𝑌· 𝑋)𝐹))
9 ovtpos 7367 . 2 (𝐺tpos (⟨𝑍, 𝑌· 𝑋)𝐹) = (𝐹(⟨𝑍, 𝑌· 𝑋)𝐺)
108, 9syl6eq 2672 1 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍)𝐹) = (𝐹(⟨𝑍, 𝑌· 𝑋)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cop 4183  cfv 5888  (class class class)co 6650  tpos ctpos 7351  Basecbs 15857  compcco 15953  oppCatcoppc 16371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-dec 11494  df-ndx 15860  df-slot 15861  df-sets 15864  df-cco 15967  df-oppc 16372
This theorem is referenced by:  oppccatid  16379  2oppccomf  16385  oppccomfpropd  16387  isepi  16400  epii  16403  oppcsect  16438  funcoppc  16535  hofcl  16899  yon12  16905  yon2  16906  yonedalem4c  16917
  Copyright terms: Public domain W3C validator