HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atomli Structured version   Visualization version   GIF version

Theorem atomli 29241
Description: An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition 3.2.17 of [PtakPulmannova] p. 66. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atoml.1 𝐴C
Assertion
Ref Expression
atomli (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}))

Proof of Theorem atomli
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atoml.1 . . . . . . . . 9 𝐴C
2 atelch 29203 . . . . . . . . 9 (𝐵 ∈ HAtoms → 𝐵C )
3 chjcl 28216 . . . . . . . . 9 ((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
41, 2, 3sylancr 695 . . . . . . . 8 (𝐵 ∈ HAtoms → (𝐴 𝐵) ∈ C )
51choccli 28166 . . . . . . . 8 (⊥‘𝐴) ∈ C
6 chincl 28358 . . . . . . . 8 (((𝐴 𝐵) ∈ C ∧ (⊥‘𝐴) ∈ C ) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C )
74, 5, 6sylancl 694 . . . . . . 7 (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C )
8 hatomic 29219 . . . . . . 7 ((((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)))
97, 8sylan 488 . . . . . 6 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)))
10 atelch 29203 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ HAtoms → 𝑥C )
11 inss2 3834 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (⊥‘𝐴)
12 sstr 3611 . . . . . . . . . . . . . . . . . 18 ((𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (⊥‘𝐴)) → 𝑥 ⊆ (⊥‘𝐴))
1311, 12mpan2 707 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → 𝑥 ⊆ (⊥‘𝐴))
141pjococi 28296 . . . . . . . . . . . . . . . . . . . . 21 (⊥‘(⊥‘𝐴)) = 𝐴
1514oveq1i 6660 . . . . . . . . . . . . . . . . . . . 20 ((⊥‘(⊥‘𝐴)) ∨ 𝑥) = (𝐴 𝑥)
1615ineq1i 3810 . . . . . . . . . . . . . . . . . . 19 (((⊥‘(⊥‘𝐴)) ∨ 𝑥) ∩ (⊥‘𝐴)) = ((𝐴 𝑥) ∩ (⊥‘𝐴))
17 incom 3805 . . . . . . . . . . . . . . . . . . 19 (((⊥‘(⊥‘𝐴)) ∨ 𝑥) ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥))
1816, 17eqtr3i 2646 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝑥) ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥))
19 pjoml3 28471 . . . . . . . . . . . . . . . . . . . 20 (((⊥‘𝐴) ∈ C𝑥C ) → (𝑥 ⊆ (⊥‘𝐴) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥))
205, 19mpan 706 . . . . . . . . . . . . . . . . . . 19 (𝑥C → (𝑥 ⊆ (⊥‘𝐴) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥))
2120imp 445 . . . . . . . . . . . . . . . . . 18 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥)
2218, 21syl5eq 2668 . . . . . . . . . . . . . . . . 17 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
2310, 13, 22syl2an 494 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
2423ad2ant2lr 784 . . . . . . . . . . . . . . 15 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
25 inss1 3833 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (𝐴 𝐵)
26 sstr 3611 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (𝐴 𝐵)) → 𝑥 ⊆ (𝐴 𝐵))
2725, 26mpan2 707 . . . . . . . . . . . . . . . . . . 19 (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → 𝑥 ⊆ (𝐴 𝐵))
28 chub1 28366 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴C𝐵C ) → 𝐴 ⊆ (𝐴 𝐵))
291, 28mpan 706 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵C𝐴 ⊆ (𝐴 𝐵))
3029adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑥C ) → 𝐴 ⊆ (𝐴 𝐵))
311, 3mpan 706 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵C → (𝐴 𝐵) ∈ C )
32 chlub 28368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴C𝑥C ∧ (𝐴 𝐵) ∈ C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
331, 32mp3an1 1411 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥C ∧ (𝐴 𝐵) ∈ C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3431, 33sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥C𝐵C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3534biimpd 219 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥C𝐵C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3635ancoms 469 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑥C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3730, 36mpand 711 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵C𝑥C ) → (𝑥 ⊆ (𝐴 𝐵) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
382, 10, 37syl2an 494 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥 ⊆ (𝐴 𝐵) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3938imp 445 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
4027, 39sylan2 491 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
4140adantrr 753 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
42 chjcl 28216 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴C𝑥C ) → (𝐴 𝑥) ∈ C )
431, 10, 42sylancr 695 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ HAtoms → (𝐴 𝑥) ∈ C )
442, 43anim12i 590 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝐵C ∧ (𝐴 𝑥) ∈ C ))
4544adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐵C ∧ (𝐴 𝑥) ∈ C ))
46 chub1 28366 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑥C ) → 𝐴 ⊆ (𝐴 𝑥))
471, 10, 46sylancr 695 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ HAtoms → 𝐴 ⊆ (𝐴 𝑥))
4847ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝐴 ⊆ (𝐴 𝑥))
49 pm3.22 465 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
5049adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
5127adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → 𝑥 ⊆ (𝐴 𝐵))
52 incom 3805 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝑥) = (𝑥𝐴)
53 chsh 28081 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥C𝑥S )
541chshii 28084 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴S
55 orthin 28305 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥S𝐴S ) → (𝑥 ⊆ (⊥‘𝐴) → (𝑥𝐴) = 0))
5653, 54, 55sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥C → (𝑥 ⊆ (⊥‘𝐴) → (𝑥𝐴) = 0))
5756imp 445 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → (𝑥𝐴) = 0)
5852, 57syl5eq 2668 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → (𝐴𝑥) = 0)
5910, 13, 58syl2an 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝐴𝑥) = 0)
6051, 59jca 554 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0))
6160ad2ant2lr 784 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0))
62 atexch 29240 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0) → 𝐵 ⊆ (𝐴 𝑥)))
631, 62mp3an1 1411 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0) → 𝐵 ⊆ (𝐴 𝑥)))
6450, 61, 63sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝐵 ⊆ (𝐴 𝑥))
65 chlub 28368 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴C𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) ↔ (𝐴 𝐵) ⊆ (𝐴 𝑥)))
661, 65mp3an1 1411 . . . . . . . . . . . . . . . . . . . 20 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) ↔ (𝐴 𝐵) ⊆ (𝐴 𝑥)))
6766biimpd 219 . . . . . . . . . . . . . . . . . . 19 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) → (𝐴 𝐵) ⊆ (𝐴 𝑥)))
6867expd 452 . . . . . . . . . . . . . . . . . 18 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → (𝐴 ⊆ (𝐴 𝑥) → (𝐵 ⊆ (𝐴 𝑥) → (𝐴 𝐵) ⊆ (𝐴 𝑥))))
6945, 48, 64, 68syl3c 66 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝐵) ⊆ (𝐴 𝑥))
7041, 69eqssd 3620 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝑥) = (𝐴 𝐵))
7170ineq1d 3813 . . . . . . . . . . . . . . 15 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = ((𝐴 𝐵) ∩ (⊥‘𝐴)))
7224, 71eqtr3d 2658 . . . . . . . . . . . . . 14 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝑥 = ((𝐴 𝐵) ∩ (⊥‘𝐴)))
7372eleq1d 2686 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
7473exp43 640 . . . . . . . . . . . 12 (𝐵 ∈ HAtoms → (𝑥 ∈ HAtoms → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))))
7574com24 95 . . . . . . . . . . 11 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (𝑥 ∈ HAtoms → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))))
7675imp31 448 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ∈ HAtoms → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
7776ibd 258 . . . . . . . . 9 (((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
7877ex 450 . . . . . . . 8 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (𝑥 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
7978com23 86 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (𝑥 ∈ HAtoms → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
8079rexlimdv 3030 . . . . . 6 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
819, 80mpd 15 . . . . 5 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)
8281ex 450 . . . 4 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
8382necon1bd 2812 . . 3 (𝐵 ∈ HAtoms → (¬ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
8483orrd 393 . 2 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
85 elun 3753 . . 3 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0}))
86 fvex 6201 . . . . . 6 (⊥‘𝐴) ∈ V
8786inex2 4800 . . . . 5 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ V
8887elsn 4192 . . . 4 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0} ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0)
8988orbi2i 541 . . 3 ((((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
9085, 89bitri 264 . 2 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
9184, 90sylibr 224 1 (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cun 3572  cin 3573  wss 3574  {csn 4177  cfv 5888  (class class class)co 6650   S csh 27785   C cch 27786  cort 27787   chj 27790  0c0h 27792  HAtomscat 27822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942  ax-hcompl 28059
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-lm 21033  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-dip 27556  df-ssp 27577  df-ph 27668  df-cbn 27719  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-hlim 27829  df-hcau 27830  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-span 28168  df-chj 28169  df-chsup 28170  df-pjh 28254  df-cv 29138  df-at 29197
This theorem is referenced by:  atoml2i  29242
  Copyright terms: Public domain W3C validator