Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itg2addnclem2 Structured version   Visualization version   GIF version

Theorem itg2addnclem2 33462
Description: Lemma for itg2addnc 33464. The function described is a simple function. (Contributed by Brendan Leahy, 29-Oct-2017.)
Hypotheses
Ref Expression
itg2addnc.f1 (𝜑𝐹 ∈ MblFn)
itg2addnc.f2 (𝜑𝐹:ℝ⟶(0[,)+∞))
Assertion
Ref Expression
itg2addnclem2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ dom ∫1)
Distinct variable groups:   𝑥,𝑣,,𝐹   𝜑,𝑣,𝑥,

Proof of Theorem itg2addnclem2
Dummy variables 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2addnc.f2 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 rge0ssre 12280 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
3 fss 6056 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
41, 2, 3sylancl 694 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
54ad2antrr 762 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝐹:ℝ⟶ℝ)
65ffvelrnda 6359 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
7 rpre 11839 . . . . . . . . . 10 (𝑣 ∈ ℝ+𝑣 ∈ ℝ)
8 3re 11094 . . . . . . . . . . 11 3 ∈ ℝ
9 3ne0 11115 . . . . . . . . . . 11 3 ≠ 0
108, 9pm3.2i 471 . . . . . . . . . 10 (3 ∈ ℝ ∧ 3 ≠ 0)
11 redivcl 10744 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (𝑣 / 3) ∈ ℝ)
12113expb 1266 . . . . . . . . . 10 ((𝑣 ∈ ℝ ∧ (3 ∈ ℝ ∧ 3 ≠ 0)) → (𝑣 / 3) ∈ ℝ)
137, 10, 12sylancl 694 . . . . . . . . 9 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℝ)
1413ad2antlr 763 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
15 rpcnne0 11850 . . . . . . . . . 10 (𝑣 ∈ ℝ+ → (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0))
16 3cn 11095 . . . . . . . . . . 11 3 ∈ ℂ
1716, 9pm3.2i 471 . . . . . . . . . 10 (3 ∈ ℂ ∧ 3 ≠ 0)
18 divne0 10697 . . . . . . . . . 10 (((𝑣 ∈ ℂ ∧ 𝑣 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (𝑣 / 3) ≠ 0)
1915, 17, 18sylancl 694 . . . . . . . . 9 (𝑣 ∈ ℝ+ → (𝑣 / 3) ≠ 0)
2019ad2antlr 763 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
216, 14, 20redivcld 10853 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
22 reflcl 12597 . . . . . . 7 (((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
2321, 22syl 17 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
24 peano2rem 10348 . . . . . 6 ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
2523, 24syl 17 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
2625, 14remulcld 10070 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ)
27 i1ff 23443 . . . . . 6 ( ∈ dom ∫1:ℝ⟶ℝ)
2827ad2antlr 763 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → :ℝ⟶ℝ)
2928ffvelrnda 6359 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ℝ)
3026, 29ifcld 4131 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ ℝ)
31 eqid 2622 . . 3 (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
3230, 31fmptd 6385 . 2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))):ℝ⟶ℝ)
33 fzfi 12771 . . . . 5 (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∈ Fin
34 ovex 6678 . . . . . . 7 ((𝑡 − 1) · (𝑣 / 3)) ∈ V
35 eqid 2622 . . . . . . 7 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) = (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))
3634, 35fnmpti 6022 . . . . . 6 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) Fn (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
37 dffn4 6121 . . . . . 6 ((𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) Fn (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↔ (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))))
3836, 37mpbi 220 . . . . 5 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))
39 fofi 8252 . . . . 5 (((0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∈ Fin ∧ (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))) → ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin)
4033, 38, 39mp2an 708 . . . 4 ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin
41 i1frn 23444 . . . . 5 ( ∈ dom ∫1 → ran ∈ Fin)
4241ad2antlr 763 . . . 4 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran ∈ Fin)
43 unfi 8227 . . . 4 ((ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin ∧ ran ∈ Fin) → (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin)
4440, 42, 43sylancr 695 . . 3 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin)
45 3nn 11186 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ
46 nnrp 11842 . . . . . . . . . . . . . . . . 17 (3 ∈ ℕ → 3 ∈ ℝ+)
4745, 46ax-mp 5 . . . . . . . . . . . . . . . 16 3 ∈ ℝ+
48 rpdivcl 11856 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑣 / 3) ∈ ℝ+)
4947, 48mpan2 707 . . . . . . . . . . . . . . 15 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℝ+)
5049ad2antlr 763 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
511ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝐹:ℝ⟶(0[,)+∞))
5251ffvelrnda 6359 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
53 elrege0 12278 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5452, 53sylib 208 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5554simprd 479 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
566, 50, 55divge0d 11912 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹𝑥) / (𝑣 / 3)))
57 flge0nn0 12621 . . . . . . . . . . . . 13 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑥) / (𝑣 / 3))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℕ0)
5821, 56, 57syl2anc 693 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℕ0)
5958nn0ge0d 11354 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))))
6059adantr 481 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → 0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))))
61 frn 6053 . . . . . . . . . . . . . . . . 17 (:ℝ⟶ℝ → ran ⊆ ℝ)
6227, 61syl 17 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ran ⊆ ℝ)
63 i1f0rn 23449 . . . . . . . . . . . . . . . . . 18 ( ∈ dom ∫1 → 0 ∈ ran )
64 elex2 3216 . . . . . . . . . . . . . . . . . 18 (0 ∈ ran → ∃𝑥 𝑥 ∈ ran )
6563, 64syl 17 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → ∃𝑥 𝑥 ∈ ran )
66 n0 3931 . . . . . . . . . . . . . . . . 17 (ran ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ran )
6765, 66sylibr 224 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ran ≠ ∅)
68 fimaxre2 10969 . . . . . . . . . . . . . . . . 17 ((ran ⊆ ℝ ∧ ran ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥)
6962, 41, 68syl2anc 693 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥)
7062, 67, 693jca 1242 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → (ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥))
7170ad3antlr 767 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥))
72 ffn 6045 . . . . . . . . . . . . . . . . . 18 (:ℝ⟶ℝ → Fn ℝ)
7327, 72syl 17 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 Fn ℝ)
74 dffn3 6054 . . . . . . . . . . . . . . . . 17 ( Fn ℝ ↔ :ℝ⟶ran )
7573, 74sylib 208 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1:ℝ⟶ran )
7675ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → :ℝ⟶ran )
7776ffvelrnda 6359 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ran )
78 suprub 10984 . . . . . . . . . . . . . 14 (((ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥) ∧ (𝑥) ∈ ran ) → (𝑥) ≤ sup(ran , ℝ, < ))
7971, 77, 78syl2anc 693 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ≤ sup(ran , ℝ, < ))
80 suprcl 10983 . . . . . . . . . . . . . . . . 17 ((ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥) → sup(ran , ℝ, < ) ∈ ℝ)
8162, 67, 69, 80syl3anc 1326 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → sup(ran , ℝ, < ) ∈ ℝ)
8281ad3antlr 767 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → sup(ran , ℝ, < ) ∈ ℝ)
83 letr 10131 . . . . . . . . . . . . . . 15 (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ ∧ (𝑥) ∈ ℝ ∧ sup(ran , ℝ, < ) ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < )))
8426, 29, 82, 83syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < )))
8525, 82, 50lemuldivd 11921 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) ↔ ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (sup(ran , ℝ, < ) / (𝑣 / 3))))
86 1red 10055 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
8782, 14, 20redivcld 10853 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (sup(ran , ℝ, < ) / (𝑣 / 3)) ∈ ℝ)
8823, 86, 87lesubaddd 10624 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (sup(ran , ℝ, < ) / (𝑣 / 3)) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
8985, 88bitrd 268 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
90 peano2re 10209 . . . . . . . . . . . . . . . . . 18 ((sup(ran , ℝ, < ) / (𝑣 / 3)) ∈ ℝ → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ)
9187, 90syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ)
92 ceige 12644 . . . . . . . . . . . . . . . . 17 (((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
9391, 92syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
94 ceicl 12642 . . . . . . . . . . . . . . . . . . 19 (((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
9591, 94syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
9695zred 11482 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℝ)
97 letr 10131 . . . . . . . . . . . . . . . . 17 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ ∧ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
9823, 91, 96, 97syl3anc 1326 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
9993, 98mpan2d 710 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10089, 99sylbid 230 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10184, 100syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10279, 101mpan2d 710 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
103102adantrd 484 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
104103imp 445 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
10521flcld 12599 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
106105adantr 481 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
107 0zd 11389 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → 0 ∈ ℤ)
10895adantr 481 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
109 elfz 12332 . . . . . . . . . . 11 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ ∧ 0 ∈ ℤ ∧ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↔ (0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∧ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))))
110106, 107, 108, 109syl3anc 1326 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↔ (0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∧ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))))
11160, 104, 110mpbir2and 957 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
112 eqid 2622 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))
113 oveq1 6657 . . . . . . . . . . . 12 (𝑡 = (⌊‘((𝐹𝑥) / (𝑣 / 3))) → (𝑡 − 1) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1))
114113oveq1d 6665 . . . . . . . . . . 11 (𝑡 = (⌊‘((𝐹𝑥) / (𝑣 / 3))) → ((𝑡 − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))
115114eqeq2d 2632 . . . . . . . . . 10 (𝑡 = (⌊‘((𝐹𝑥) / (𝑣 / 3))) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)) ↔ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
116115rspcev 3309 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∧ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) → ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
117111, 112, 116sylancl 694 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
118 ovex 6678 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ V
11935elrnmpt 5372 . . . . . . . . 9 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ V → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ↔ ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3))))
120118, 119ax-mp 5 . . . . . . . 8 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ↔ ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
121117, 120sylibr 224 . . . . . . 7 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))))
122 elun1 3780 . . . . . . 7 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
123121, 122syl 17 . . . . . 6 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
124 elun2 3781 . . . . . . . 8 ((𝑥) ∈ ran → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
12577, 124syl 17 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
126125adantr 481 . . . . . 6 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
127123, 126ifclda 4120 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
128127, 31fmptd 6385 . . . 4 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))):ℝ⟶(ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
129 frn 6053 . . . 4 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))):ℝ⟶(ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
130128, 129syl 17 . . 3 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
131 ssfi 8180 . . 3 (((ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin ∧ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran )) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ Fin)
13244, 130, 131syl2anc 693 . 2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ Fin)
13331mptpreima 5628 . . . 4 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}}
134 unrab 3898 . . . . 5 ({𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} ∪ {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}) = {𝑥 ∈ ℝ ∣ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)))}
135 inrab 3899 . . . . . . . 8 ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) = {𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)}
136135ineq1i 3810 . . . . . . 7 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = ({𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))})
137 inrab 3899 . . . . . . 7 ({𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = {𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))}
138136, 137eqtri 2644 . . . . . 6 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = {𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))}
139 unrab 3898 . . . . . . . 8 ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) = {𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)}
140139ineq1i 3810 . . . . . . 7 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = ({𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
141 inrab 3899 . . . . . . 7 ({𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}
142140, 141eqtri 2644 . . . . . 6 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}
143138, 142uneq12i 3765 . . . . 5 ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) = ({𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} ∪ {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))})
144 eqcom 2629 . . . . . . . 8 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 𝑡𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
145 fvex 6201 . . . . . . . . . 10 (𝑥) ∈ V
146118, 145ifex 4156 . . . . . . . . 9 if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ V
147146elsn 4192 . . . . . . . 8 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 𝑡)
148 ianor 509 . . . . . . . . . . . 12 (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ ¬ (𝑥) ≠ 0))
149 nne 2798 . . . . . . . . . . . . 13 (¬ (𝑥) ≠ 0 ↔ (𝑥) = 0)
150149orbi2i 541 . . . . . . . . . . . 12 ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ ¬ (𝑥) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0))
151148, 150bitr2i 265 . . . . . . . . . . 11 ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ↔ ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0))
152151anbi1i 731 . . . . . . . . . 10 (((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)) ↔ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥)))
153152orbi2i 541 . . . . . . . . 9 (((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))) ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥))))
154 eqif 4126 . . . . . . . . 9 (𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥))))
155153, 154bitr4i 267 . . . . . . . 8 (((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))) ↔ 𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
156144, 147, 1553bitr4i 292 . . . . . . 7 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))))
157156a1i 11 . . . . . 6 (𝑥 ∈ ℝ → (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)))))
158157rabbiia 3185 . . . . 5 {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} = {𝑥 ∈ ℝ ∣ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)))}
159134, 143, 1583eqtr4ri 2655 . . . 4 {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} = ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}))
160133, 159eqtri 2644 . . 3 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}))
161 eldifi 3732 . . . . . 6 (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → 𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))))
162 frn 6053 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))):ℝ⟶ℝ → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ ℝ)
16332, 162syl 17 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ ℝ)
164163sseld 3602 . . . . . 6 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) → 𝑡 ∈ ℝ))
165161, 164syl5 34 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → 𝑡 ∈ ℝ))
166165imdistani 726 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ))
167 rabiun 33382 . . . . . . . . . 10 {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)}
168 cnvimarndm 5486 . . . . . . . . . . . . . 14 ( “ ran ) = dom
169 iunid 4575 . . . . . . . . . . . . . . . 16 𝑡 ∈ ran {𝑡} = ran
170169imaeq2i 5464 . . . . . . . . . . . . . . 15 ( 𝑡 ∈ ran {𝑡}) = ( “ ran )
171 imaiun 6503 . . . . . . . . . . . . . . 15 ( 𝑡 ∈ ran {𝑡}) = 𝑡 ∈ ran ( “ {𝑡})
172170, 171eqtr3i 2646 . . . . . . . . . . . . . 14 ( “ ran ) = 𝑡 ∈ ran ( “ {𝑡})
173168, 172eqtr3i 2646 . . . . . . . . . . . . 13 dom = 𝑡 ∈ ran ( “ {𝑡})
174 fdm 6051 . . . . . . . . . . . . . 14 (:ℝ⟶ℝ → dom = ℝ)
17527, 174syl 17 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → dom = ℝ)
176173, 175syl5eqr 2670 . . . . . . . . . . . 12 ( ∈ dom ∫1 𝑡 ∈ ran ( “ {𝑡}) = ℝ)
177176ad2antlr 763 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran ( “ {𝑡}) = ℝ)
178 rabeq 3192 . . . . . . . . . . 11 ( 𝑡 ∈ ran ( “ {𝑡}) = ℝ → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
179177, 178syl 17 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
180167, 179syl5eqr 2670 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
181 fniniseg 6338 . . . . . . . . . . . . . . . . . 18 ( Fn ℝ → (𝑥 ∈ ( “ {𝑡}) ↔ (𝑥 ∈ ℝ ∧ (𝑥) = 𝑡)))
18227, 72, 1813syl 18 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → (𝑥 ∈ ( “ {𝑡}) ↔ (𝑥 ∈ ℝ ∧ (𝑥) = 𝑡)))
183182simplbda 654 . . . . . . . . . . . . . . . 16 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → (𝑥) = 𝑡)
184183breq2d 4665 . . . . . . . . . . . . . . 15 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ↔ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
185184rabbidva 3188 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
186 inrab2 3900 . . . . . . . . . . . . . . 15 ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}
187 imassrn 5477 . . . . . . . . . . . . . . . . . 18 ( “ {𝑡}) ⊆ ran
188 dfdm4 5316 . . . . . . . . . . . . . . . . . . 19 dom = ran
189188, 175syl5eqr 2670 . . . . . . . . . . . . . . . . . 18 ( ∈ dom ∫1 → ran = ℝ)
190187, 189syl5sseq 3653 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → ( “ {𝑡}) ⊆ ℝ)
191 sseqin2 3817 . . . . . . . . . . . . . . . . 17 (( “ {𝑡}) ⊆ ℝ ↔ (ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}))
192190, 191sylib 208 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → (ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}))
193 rabeq 3192 . . . . . . . . . . . . . . . 16 ((ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}) → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
194192, 193syl 17 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
195186, 194syl5eq 2668 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
196185, 195eqtr4d 2659 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
197196ad3antlr 767 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
19825adantlr 751 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
19962ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran ⊆ ℝ)
200199sselda 3603 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → 𝑡 ∈ ℝ)
201200adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℝ)
20249ad3antlr 767 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
203198, 201, 202lemuldivd 11921 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡 ↔ ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (𝑡 / (𝑣 / 3))))
20423adantlr 751 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
205 1red 10055 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
20613ad3antlr 767 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
20719ad3antlr 767 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
208201, 206, 207redivcld 10853 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
209204, 205, 208lesubaddd 10624 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (𝑡 / (𝑣 / 3)) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1)))
2106adantlr 751 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
211 peano2re 10209 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 / (𝑣 / 3)) ∈ ℝ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
212208, 211syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
213 reflcl 12597 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ → (⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ)
214212, 213syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ)
215 peano2re 10209 . . . . . . . . . . . . . . . . . . . 20 ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ → ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ∈ ℝ)
216214, 215syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ∈ ℝ)
217210, 216, 202ltdivmuld 11923 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ↔ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))
21821adantlr 751 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
219 flflp1 12608 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ ((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))
220218, 212, 219syl2anc 693 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ ((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))
221206, 216remulcld 10070 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ)
222221rexrd 10089 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ*)
223 elioomnf 12268 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
224222, 223syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
225210biantrurd 529 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
226224, 225bitr4d 271 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))
227217, 220, 2263bitr4d 300 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
228203, 209, 2273bitrd 294 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡 ↔ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
229228rabbidva 3188 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
2301feqmptd 6249 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
231230cnveqd 5298 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
232231imaeq1d 5465 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
233 eqid 2622 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ ↦ (𝐹𝑥)) = (𝑥 ∈ ℝ ↦ (𝐹𝑥))
234233mptpreima 5628 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))}
235232, 234syl6eq 2672 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
236235ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
237229, 236eqtr4d 2659 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
238 itg2addnc.f1 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ MblFn)
239 mbfima 23399 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
240238, 4, 239syl2anc 693 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
241240ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
242237, 241eqeltrd 2701 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
24362sseld 3602 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → (𝑡 ∈ ran 𝑡 ∈ ℝ))
244243ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ ran 𝑡 ∈ ℝ))
245244imdistani 726 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ))
246 i1fmbf 23442 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 ∈ MblFn)
247246, 27jca 554 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ( ∈ MblFn ∧ :ℝ⟶ℝ))
248247ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ( ∈ MblFn ∧ :ℝ⟶ℝ))
249 mbfimasn 23401 . . . . . . . . . . . . . . . 16 (( ∈ MblFn ∧ :ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
2502493expa 1265 . . . . . . . . . . . . . . 15 ((( ∈ MblFn ∧ :ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
251248, 250sylan 488 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
252245, 251syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ( “ {𝑡}) ∈ dom vol)
253 inmbl 23310 . . . . . . . . . . . . 13 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol ∧ ( “ {𝑡}) ∈ dom vol) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
254242, 252, 253syl2anc 693 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
255197, 254eqeltrd 2701 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
256255ralrimiva 2966 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
257 finiunmbl 23312 . . . . . . . . . 10 ((ran ∈ Fin ∧ ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
25842, 256, 257syl2anc 693 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
259180, 258eqeltrrd 2702 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
260 unrab 3898 . . . . . . . . . . 11 ({𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}) = {𝑥 ∈ ℝ ∣ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))}
26127feqmptd 6249 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 = (𝑥 ∈ ℝ ↦ (𝑥)))
262261cnveqd 5298 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 = (𝑥 ∈ ℝ ↦ (𝑥)))
263262imaeq1d 5465 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → ( “ (-∞(,)0)) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ (-∞(,)0)))
264 eqid 2622 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (𝑥)) = (𝑥 ∈ ℝ ↦ (𝑥))
265264mptpreima 5628 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ↦ (𝑥)) “ (-∞(,)0)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)}
266263, 265syl6eq 2672 . . . . . . . . . . . 12 ( ∈ dom ∫1 → ( “ (-∞(,)0)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)})
267262imaeq1d 5465 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → ( “ (0(,)+∞)) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ (0(,)+∞)))
268264mptpreima 5628 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ↦ (𝑥)) “ (0(,)+∞)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}
269267, 268syl6eq 2672 . . . . . . . . . . . 12 ( ∈ dom ∫1 → ( “ (0(,)+∞)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)})
270266, 269uneq12d 3768 . . . . . . . . . . 11 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) = ({𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}))
27127ffvelrnda 6359 . . . . . . . . . . . . 13 (( ∈ dom ∫1𝑥 ∈ ℝ) → (𝑥) ∈ ℝ)
272 0re 10040 . . . . . . . . . . . . . . 15 0 ∈ ℝ
273 lttri2 10120 . . . . . . . . . . . . . . 15 (((𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥) ≠ 0 ↔ ((𝑥) < 0 ∨ 0 < (𝑥))))
274272, 273mpan2 707 . . . . . . . . . . . . . 14 ((𝑥) ∈ ℝ → ((𝑥) ≠ 0 ↔ ((𝑥) < 0 ∨ 0 < (𝑥))))
275 ibar 525 . . . . . . . . . . . . . . 15 ((𝑥) ∈ ℝ → (((𝑥) < 0 ∨ 0 < (𝑥)) ↔ ((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥)))))
276 andi 911 . . . . . . . . . . . . . . . 16 (((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥))) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
277 0xr 10086 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
278 elioomnf 12268 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ* → ((𝑥) ∈ (-∞(,)0) ↔ ((𝑥) ∈ ℝ ∧ (𝑥) < 0)))
279 elioopnf 12267 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ* → ((𝑥) ∈ (0(,)+∞) ↔ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
280278, 279orbi12d 746 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥)))))
281277, 280ax-mp 5 . . . . . . . . . . . . . . . 16 (((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
282276, 281bitr4i 267 . . . . . . . . . . . . . . 15 (((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥))) ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)))
283275, 282syl6bb 276 . . . . . . . . . . . . . 14 ((𝑥) ∈ ℝ → (((𝑥) < 0 ∨ 0 < (𝑥)) ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
284274, 283bitrd 268 . . . . . . . . . . . . 13 ((𝑥) ∈ ℝ → ((𝑥) ≠ 0 ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
285271, 284syl 17 . . . . . . . . . . . 12 (( ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑥) ≠ 0 ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
286285rabbidva 3188 . . . . . . . . . . 11 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} = {𝑥 ∈ ℝ ∣ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))})
287260, 270, 2863eqtr4a 2682 . . . . . . . . . 10 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) = {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0})
288 i1fima 23445 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ (-∞(,)0)) ∈ dom vol)
289 i1fima 23445 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ (0(,)+∞)) ∈ dom vol)
290 unmbl 23305 . . . . . . . . . . 11 ((( “ (-∞(,)0)) ∈ dom vol ∧ ( “ (0(,)+∞)) ∈ dom vol) → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) ∈ dom vol)
291288, 289, 290syl2anc 693 . . . . . . . . . 10 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) ∈ dom vol)
292287, 291eqeltrrd 2702 . . . . . . . . 9 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol)
293292ad2antlr 763 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol)
294 inmbl 23310 . . . . . . . 8 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
295259, 293, 294syl2anc 693 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
296295adantr 481 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
29723recnd 10068 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℂ)
298297adantlr 751 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℂ)
299 1cnd 10056 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
300 simplr 792 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℝ)
30113ad3antlr 767 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
30219ad3antlr 767 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
303300, 301, 302redivcld 10853 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
304303recnd 10068 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℂ)
305298, 299, 304subadd2d 10411 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
306 eqcom 2629 . . . . . . . . . 10 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ (𝑡 / (𝑣 / 3)) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1))
307 recn 10026 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
308307ad2antlr 763 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℂ)
30925recnd 10068 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℂ)
310309adantlr 751 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℂ)
31113recnd 10068 . . . . . . . . . . . 12 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℂ)
312311ad3antlr 767 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℂ)
313308, 310, 312, 302divmul3d 10835 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
314306, 313syl5bb 272 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
315305, 314bitr3d 270 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
316315rabbidva 3188 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))})
317 imaundi 5545 . . . . . . . . . . 11 (𝐹 “ ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
318231ad4antr 768 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
319 zre 11381 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
320319adantl 482 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
32113ad3antlr 767 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ)
322320, 321remulcld 10070 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ)
323322rexrd 10089 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ*)
324 peano2z 11418 . . . . . . . . . . . . . . . . 17 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℤ)
325324zred 11482 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
326325adantl 482 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
327321, 326remulcld 10070 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
328327rexrd 10089 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ*)
329 zcn 11382 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℂ)
330329adantl 482 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℂ)
331311ad3antlr 767 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℂ)
332330, 331mulcomd 10061 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) = ((𝑣 / 3) · ((𝑡 / (𝑣 / 3)) + 1)))
33349ad3antlr 767 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ+)
334319ltp1d 10954 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) < (((𝑡 / (𝑣 / 3)) + 1) + 1))
335334adantl 482 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) < (((𝑡 / (𝑣 / 3)) + 1) + 1))
336320, 326, 333, 335ltmul2dd 11928 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · ((𝑡 / (𝑣 / 3)) + 1)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))
337332, 336eqbrtrd 4675 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))
338 snunioo 12298 . . . . . . . . . . . . 13 (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ* ∧ ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ* ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) → ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
339323, 328, 337, 338syl3anc 1326 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
340318, 339imaeq12d 5467 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
341317, 340syl5eqr 2670 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
342233mptpreima 5628 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))}
3434ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
344343ffvelrnda 6359 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
3453443biant1d 1441 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
346345adantr 481 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
347319adantl 482 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
348344adantr 481 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹𝑥) ∈ ℝ)
34949ad4antlr 769 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ+)
350347, 348, 349lemuldivd 11921 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ ((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3))))
351325adantl 482 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
352348, 351, 349ltdivmuld 11923 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1) ↔ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
353352bicomd 213 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ↔ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1)))
354350, 353anbi12d 747 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
355346, 354bitr3d 270 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
356 elico2 12237 . . . . . . . . . . . . . . . 16 (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ ∧ ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ*) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
357322, 328, 356syl2anc 693 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
358357adantlr 751 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
359 eqcom 2629 . . . . . . . . . . . . . . 15 (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1))
36021adantlr 751 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
361 flbi 12617 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
362360, 361sylan 488 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
363359, 362syl5bb 272 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
364355, 358, 3633bitr4d 300 . . . . . . . . . . . . 13 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
365364an32s 846 . . . . . . . . . . . 12 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
366365rabbidva 3188 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))} = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
367342, 366syl5eq 2668 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
368341, 367eqtrd 2656 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
369238ad4antr 768 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹 ∈ MblFn)
3704ad4antr 768 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹:ℝ⟶ℝ)
371 mbfimasn 23401 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ) → (𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol)
372369, 370, 322, 371syl3anc 1326 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol)
373 mbfima 23399 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
374238, 4, 373syl2anc 693 . . . . . . . . . . 11 (𝜑 → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
375374ad4antr 768 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
376 unmbl 23305 . . . . . . . . . 10 (((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol ∧ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) ∈ dom vol)
377372, 375, 376syl2anc 693 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) ∈ dom vol)
378368, 377eqeltrrd 2702 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
379 simpr 477 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
380360flcld 12599 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
381380adantr 481 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
382379, 381eqeltrd 2701 . . . . . . . . . . . . 13 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ)
383382stoic1a 1697 . . . . . . . . . . . 12 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
384383an32s 846 . . . . . . . . . . 11 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) ∧ 𝑥 ∈ ℝ) → ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
385384ralrimiva 2966 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ∀𝑥 ∈ ℝ ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
386 rabeq0 3957 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = ∅ ↔ ∀𝑥 ∈ ℝ ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
387385, 386sylibr 224 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = ∅)
388 0mbl 23307 . . . . . . . . 9 ∅ ∈ dom vol
389387, 388syl6eqel 2709 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
390378, 389pm2.61dan 832 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
391316, 390eqeltrrd 2702 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))} ∈ dom vol)
392 inmbl 23310 . . . . . 6 ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))} ∈ dom vol) → (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol)
393296, 391, 392syl2anc 693 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol)
394 rabiun 33382 . . . . . . . . . . 11 {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)}
395 rabeq 3192 . . . . . . . . . . . 12 ( 𝑡 ∈ ran ( “ {𝑡}) = ℝ → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
396176, 395syl 17 . . . . . . . . . . 11 ( ∈ dom ∫1 → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
397394, 396syl5eqr 2670 . . . . . . . . . 10 ( ∈ dom ∫1 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
398397ad2antlr 763 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
399184notbid 308 . . . . . . . . . . . . . . 15 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
400399rabbidva 3188 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
401 inrab2 3900 . . . . . . . . . . . . . . 15 ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}
402 rabeq 3192 . . . . . . . . . . . . . . . 16 ((ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}) → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
403192, 402syl 17 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
404401, 403syl5eq 2668 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
405400, 404eqtr4d 2659 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
406405ad3antlr 767 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
407 imaundi 5545 . . . . . . . . . . . . . . . . 17 (𝐹 “ ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)))
40813, 19jca 554 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 ∈ ℝ+ → ((𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0))
409 redivcl 10744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑡 ∈ ℝ ∧ (𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
4104093expb 1266 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℝ ∧ ((𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0)) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
411408, 410sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ+) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
412411ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
413412adantll 750 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
414413, 211syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
415 peano2re 10209 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
416 reflcl 12597 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
417414, 415, 4163syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
41813ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
419417, 418remulcld 10070 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ)
420419rexrd 10089 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ*)
421 pnfxr 10092 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
422421a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → +∞ ∈ ℝ*)
423 ltpnf 11954 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞)
424419, 423syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞)
425 snunioo 12298 . . . . . . . . . . . . . . . . . . 19 ((((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞) → ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) = (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞))
426420, 422, 424, 425syl3anc 1326 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) = (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞))
427426imaeq2d 5466 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
428407, 427syl5eqr 2670 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
429231imaeq1d 5465 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
430233mptpreima 5628 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)}
431429, 430syl6eq 2672 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)})
432431ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)})
433414, 415syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
434433adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
435 flflp1 12608 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ ∧ ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3)) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
436434, 360, 435syl2anc 693 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3)) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
437419adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ)
438 elicopnf 12269 . . . . . . . . . . . . . . . . . . . . . 22 (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
439437, 438syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
440344biantrurd 529 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
441417adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
44249ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
443441, 344, 442lemuldivd 11921 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3))))
444439, 440, 4433bitr2d 296 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3))))
445414adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
446360, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
447 1red 10055 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
448445, 446, 447ltadd1d 10620 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
449436, 444, 4483bitr4d 300 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
450303, 447, 446ltaddsubd 10627 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1)))
451449, 450bitrd 268 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ (𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1)))
452446, 24syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
453300, 452, 442ltdivmul2d 11924 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ↔ 𝑡 < (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
454452, 301remulcld 10070 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ)
455300, 454ltnled 10184 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 < (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
456451, 453, 4553bitrd 294 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
457456rabbidva 3188 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
458428, 432, 4573eqtrd 2660 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
459238ad3antrrr 766 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → 𝐹 ∈ MblFn)
460 mbfimasn 23401 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ) → (𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol)
461459, 343, 419, 460syl3anc 1326 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol)
462 mbfima 23399 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
463238, 4, 462syl2anc 693 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
464463ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
465 unmbl 23305 . . . . . . . . . . . . . . . 16 (((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol ∧ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) ∈ dom vol)
466461, 464, 465syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) ∈ dom vol)
467458, 466eqeltrrd 2702 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
468245, 467syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
469 inmbl 23310 . . . . . . . . . . . . 13 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol ∧ ( “ {𝑡}) ∈ dom vol) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
470468, 252, 469syl2anc 693 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
471406, 470eqeltrd 2701 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
472471ralrimiva 2966 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
473 finiunmbl 23312 . . . . . . . . . 10 ((ran ∈ Fin ∧ ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
47442, 472, 473syl2anc 693 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
475398, 474eqeltrrd 2702 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
476262imaeq1d 5465 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ {0}) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}))
477264mptpreima 5628 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}
478145elsn 4192 . . . . . . . . . . . . . 14 ((𝑥) ∈ {0} ↔ (𝑥) = 0)
479478a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((𝑥) ∈ {0} ↔ (𝑥) = 0))
480479rabbiia 3185 . . . . . . . . . . . 12 {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}} = {𝑥 ∈ ℝ ∣ (𝑥) = 0}
481477, 480eqtri 2644 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) = 0}
482476, 481syl6eq 2672 . . . . . . . . . 10 ( ∈ dom ∫1 → ( “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) = 0})
483 i1fima 23445 . . . . . . . . . 10 ( ∈ dom ∫1 → ( “ {0}) ∈ dom vol)
484482, 483eqeltrrd 2702 . . . . . . . . 9 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol)
485484ad2antlr 763 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol)
486 unmbl 23305 . . . . . . . 8 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
487475, 485, 486syl2anc 693 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
488487adantr 481 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
489262imaeq1d 5465 . . . . . . . . 9 ( ∈ dom ∫1 → ( “ {𝑡}) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}))
490264mptpreima 5628 . . . . . . . . . 10 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {𝑡}}
491145elsn 4192 . . . . . . . . . . . . 13 ((𝑥) ∈ {𝑡} ↔ (𝑥) = 𝑡)
492 eqcom 2629 . . . . . . . . . . . . 13 ((𝑥) = 𝑡𝑡 = (𝑥))
493491, 492bitri 264 . . . . . . . . . . . 12 ((𝑥) ∈ {𝑡} ↔ 𝑡 = (𝑥))
494493a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥) ∈ {𝑡} ↔ 𝑡 = (𝑥)))
495494rabbiia 3185 . . . . . . . . . 10 {𝑥 ∈ ℝ ∣ (𝑥) ∈ {𝑡}} = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}
496490, 495eqtri 2644 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}
497489, 496syl6eq 2672 . . . . . . . 8 ( ∈ dom ∫1 → ( “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
498497ad3antlr 767 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
499498, 251eqeltrrd 2702 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)} ∈ dom vol)
500 inmbl 23310 . . . . . 6 ((({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)} ∈ dom vol) → (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol)
501488, 499, 500syl2anc 693 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol)
502 unmbl 23305 . . . . 5 (((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol ∧ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
503393, 501, 502syl2anc 693 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
504166, 503syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
505160, 504syl5eqel 2705 . 2 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∈ dom vol)
506 mblvol 23298 . . . 4 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∈ dom vol → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) = (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})))
507505, 506syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) = (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})))
508 eldifsn 4317 . . . . . 6 (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) ↔ (𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∧ 𝑡 ≠ 0))
509164anim1d 588 . . . . . 6 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ((𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∧ 𝑡 ≠ 0) → (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
510508, 509syl5bi 232 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
511510imdistani 726 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
512133a1i 11 . . . . . . . . . . 11 ( ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}})
513476, 477syl6eq 2672 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}})
514512, 513ineq12d 3815 . . . . . . . . . 10 ( ∈ dom ∫1 → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ({𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}))
515 inrab 3899 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})}
516514, 515syl6eq 2672 . . . . . . . . 9 ( ∈ dom ∫1 → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})})
517516ad3antlr 767 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})})
518149biimpri 218 . . . . . . . . . . . . . . . . . 18 ((𝑥) = 0 → ¬ (𝑥) ≠ 0)
519518intnand 962 . . . . . . . . . . . . . . . . 17 ((𝑥) = 0 → ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0))
520519iffalsed 4097 . . . . . . . . . . . . . . . 16 ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = (𝑥))
521 eqtr 2641 . . . . . . . . . . . . . . . 16 ((if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = (𝑥) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
522520, 521mpancom 703 . . . . . . . . . . . . . . 15 ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
523522adantl 482 . . . . . . . . . . . . . 14 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
524 simpll 790 . . . . . . . . . . . . . . 15 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → 𝑡 ≠ 0)
525524necomd 2849 . . . . . . . . . . . . . 14 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → 0 ≠ 𝑡)
526523, 525eqnetrd 2861 . . . . . . . . . . . . 13 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡)
527526ex 450 . . . . . . . . . . . 12 ((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) → ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
528 orcom 402 . . . . . . . . . . . . . 14 ((¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∨ ¬ (𝑥) ∈ {0}) ↔ (¬ (𝑥) ∈ {0} ∨ ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
529 ianor 509 . . . . . . . . . . . . . 14 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ (¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∨ ¬ (𝑥) ∈ {0}))
530 imor 428 . . . . . . . . . . . . . 14 (((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}) ↔ (¬ (𝑥) ∈ {0} ∨ ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
531528, 529, 5303bitr4i 292 . . . . . . . . . . . . 13 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ ((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
532147necon3bbii 2841 . . . . . . . . . . . . . 14 (¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡)
533478, 532imbi12i 340 . . . . . . . . . . . . 13 (((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}) ↔ ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
534531, 533bitri 264 . . . . . . . . . . . 12 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
535527, 534sylibr 224 . . . . . . . . . . 11 ((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) → ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
536535ralrimiva 2966 . . . . . . . . . 10 (𝑡 ≠ 0 → ∀𝑥 ∈ ℝ ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
537 rabeq0 3957 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅ ↔ ∀𝑥 ∈ ℝ ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
538536, 537sylibr 224 . . . . . . . . 9 (𝑡 ≠ 0 → {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅)
539538ad2antll 765 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅)
540517, 539eqtrd 2656 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅)
541 imassrn 5477 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
542 dfdm4 5316 . . . . . . . . . 10 dom (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
543146, 31dmmpti 6023 . . . . . . . . . 10 dom (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ℝ
544542, 543eqtr3i 2646 . . . . . . . . 9 ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ℝ
545541, 544sseqtri 3637 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ℝ
546 reldisj 4020 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ℝ → ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅ ↔ ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0}))))
547545, 546ax-mp 5 . . . . . . 7 ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅ ↔ ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0})))
548540, 547sylib 208 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0})))
549 ffun 6048 . . . . . . . . . 10 (:ℝ⟶ℝ → Fun )
550 difpreima 6343 . . . . . . . . . 10 (Fun → ( “ (ran ∖ {0})) = (( “ ran ) ∖ ( “ {0})))
551549, 550syl 17 . . . . . . . . 9 (:ℝ⟶ℝ → ( “ (ran ∖ {0})) = (( “ ran ) ∖ ( “ {0})))
552168, 174syl5eq 2668 . . . . . . . . . 10 (:ℝ⟶ℝ → ( “ ran ) = ℝ)
553552difeq1d 3727 . . . . . . . . 9 (:ℝ⟶ℝ → (( “ ran ) ∖ ( “ {0})) = (ℝ ∖ ( “ {0})))
554551, 553eqtrd 2656 . . . . . . . 8 (:ℝ⟶ℝ → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
55527, 554syl 17 . . . . . . 7 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
556555ad3antlr 767 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
557548, 556sseqtr4d 3642 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ( “ (ran ∖ {0})))
558 imassrn 5477 . . . . . . 7 ( “ (ran ∖ {0})) ⊆ ran
559558, 189syl5sseq 3653 . . . . . 6 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) ⊆ ℝ)
560559ad3antlr 767 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ( “ (ran ∖ {0})) ⊆ ℝ)
561 i1fima 23445 . . . . . . . 8 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) ∈ dom vol)
562 mblvol 23298 . . . . . . . 8 (( “ (ran ∖ {0})) ∈ dom vol → (vol‘( “ (ran ∖ {0}))) = (vol*‘( “ (ran ∖ {0}))))
563561, 562syl 17 . . . . . . 7 ( ∈ dom ∫1 → (vol‘( “ (ran ∖ {0}))) = (vol*‘( “ (ran ∖ {0}))))
564 neldifsn 4321 . . . . . . . 8 ¬ 0 ∈ (ran ∖ {0})
565 i1fima2 23446 . . . . . . . 8 (( ∈ dom ∫1 ∧ ¬ 0 ∈ (ran ∖ {0})) → (vol‘( “ (ran ∖ {0}))) ∈ ℝ)
566564, 565mpan2 707 . . . . . . 7 ( ∈ dom ∫1 → (vol‘( “ (ran ∖ {0}))) ∈ ℝ)
567563, 566eqeltrrd 2702 . . . . . 6 ( ∈ dom ∫1 → (vol*‘( “ (ran ∖ {0}))) ∈ ℝ)
568567ad3antlr 767 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (vol*‘( “ (ran ∖ {0}))) ∈ ℝ)
569 ovolsscl 23254 . . . . 5 ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ( “ (ran ∖ {0})) ∧ ( “ (ran ∖ {0})) ⊆ ℝ ∧ (vol*‘( “ (ran ∖ {0}))) ∈ ℝ) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
570557, 560, 568, 569syl3anc 1326 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
571511, 570syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
572507, 571eqeltrd 2701 . 2 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
57332, 132, 505, 572i1fd 23448 1 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  ifcif 4086  {csn 4177   ciun 4520   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  Fun wfun 5882   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  Fincfn 7955  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  3c3 11071  0cn0 11292  cz 11377  +crp 11832  (,)cioo 12175  [,)cico 12177  ...cfz 12326  cfl 12591  vol*covol 23231  volcvol 23232  MblFncmbf 23383  1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  itg2addnclem3  33463
  Copyright terms: Public domain W3C validator