MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcpre1 Structured version   Visualization version   GIF version

Theorem pcpre1 15547
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
pclem.2 𝑆 = sup(𝐴, ℝ, < )
Assertion
Ref Expression
pcpre1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 = 0)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)

Proof of Theorem pcpre1
StepHypRef Expression
1 1z 11407 . . . . . . . . . 10 1 ∈ ℤ
2 eleq1 2689 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℤ ↔ 1 ∈ ℤ))
31, 2mpbiri 248 . . . . . . . . 9 (𝑁 = 1 → 𝑁 ∈ ℤ)
4 ax-1ne0 10005 . . . . . . . . . 10 1 ≠ 0
5 neeq1 2856 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ≠ 0 ↔ 1 ≠ 0))
64, 5mpbiri 248 . . . . . . . . 9 (𝑁 = 1 → 𝑁 ≠ 0)
73, 6jca 554 . . . . . . . 8 (𝑁 = 1 → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
8 pclem.1 . . . . . . . . 9 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
9 pclem.2 . . . . . . . . 9 𝑆 = sup(𝐴, ℝ, < )
108, 9pcprecl 15544 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
117, 10sylan2 491 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
1211simprd 479 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∥ 𝑁)
13 simpr 477 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑁 = 1)
1412, 13breqtrd 4679 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∥ 1)
15 eluz2nn 11726 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
1615adantr 481 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℕ)
1711simpld 475 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0)
1816, 17nnexpcld 13030 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∈ ℕ)
1918nnzd 11481 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∈ ℤ)
20 1nn 11031 . . . . . 6 1 ∈ ℕ
21 dvdsle 15032 . . . . . 6 (((𝑃𝑆) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑃𝑆) ∥ 1 → (𝑃𝑆) ≤ 1))
2219, 20, 21sylancl 694 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → ((𝑃𝑆) ∥ 1 → (𝑃𝑆) ≤ 1))
2314, 22mpd 15 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ≤ 1)
2416nncnd 11036 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℂ)
2524exp0d 13002 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃↑0) = 1)
2623, 25breqtrrd 4681 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ≤ (𝑃↑0))
2716nnred 11035 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℝ)
2817nn0zd 11480 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℤ)
29 0zd 11389 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 0 ∈ ℤ)
30 eluz2b2 11761 . . . . . 6 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
3130simprbi 480 . . . . 5 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
3231adantr 481 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 1 < 𝑃)
3327, 28, 29, 32leexp2d 13039 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ (𝑃𝑆) ≤ (𝑃↑0)))
3426, 33mpbird 247 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ≤ 0)
3510simpld 475 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
367, 35sylan2 491 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0)
37 nn0le0eq0 11321 . . 3 (𝑆 ∈ ℕ0 → (𝑆 ≤ 0 ↔ 𝑆 = 0))
3836, 37syl 17 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ 𝑆 = 0))
3934, 38mpbid 222 1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916   class class class wbr 4653  cfv 5888  (class class class)co 6650  supcsup 8346  cr 9935  0cc0 9936  1c1 9937   < clt 10074  cle 10075  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  cexp 12860  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  pczpre  15552  pc1  15560
  Copyright terms: Public domain W3C validator