Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrgaplem Structured version   Visualization version   GIF version

Theorem pell1qrgaplem 37437
Description: Lemma for pell1qrgap 37438. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrgaplem (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵)))

Proof of Theorem pell1qrgaplem
StepHypRef Expression
1 nnrp 11842 . . . . . 6 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
21ad2antrr 762 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ+)
3 1rp 11836 . . . . . 6 1 ∈ ℝ+
43a1i 11 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℝ+)
52, 4rpaddcld 11887 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℝ+)
65rpsqrtcld 14150 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ∈ ℝ+)
76rpred 11872 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ∈ ℝ)
82rpsqrtcld 14150 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℝ+)
98rpred 11872 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℝ)
10 nn0re 11301 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
1110adantr 481 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
1211ad2antlr 763 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℝ)
13 nn0re 11301 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
1413adantl 482 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
1514ad2antlr 763 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℝ)
169, 15remulcld 10070 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 𝐵) ∈ ℝ)
172rpred 11872 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ)
18 1re 10039 . . . . . . . 8 1 ∈ ℝ
1918a1i 11 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℝ)
2015resqcld 13035 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℝ)
2119, 20resubcld 10458 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ∈ ℝ)
2217, 21remulcld 10070 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ∈ ℝ)
23 0red 10041 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ∈ ℝ)
2417, 23remulcld 10070 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) ∈ ℝ)
2512resqcld 13035 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℝ)
26 sq1 12958 . . . . . . . . 9 (1↑2) = 1
2726a1i 11 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) = 1)
28 nnge1 11046 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
2928adantl 482 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵)
30 simplrl 800 . . . . . . . . . . . 12 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < (𝐴 + ((√‘𝐷) · 𝐵)))
31 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 = 0 → (𝐵↑2) = (0↑2))
3231adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = (0↑2))
33 sq0 12955 . . . . . . . . . . . . . . . . . . . . 21 (0↑2) = 0
3432, 33syl6eq 2672 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = 0)
3534oveq2d 6666 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = (𝐷 · 0))
362rpcnd 11874 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℂ)
3736adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐷 ∈ ℂ)
3837mul01d 10235 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · 0) = 0)
3935, 38eqtrd 2656 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = 0)
4039oveq2d 6666 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = ((𝐴↑2) − 0))
41 simplrr 801 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
4212recnd 10068 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℂ)
4342sqcld 13006 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℂ)
4443adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) ∈ ℂ)
4544subid1d 10381 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − 0) = (𝐴↑2))
4640, 41, 453eqtr3d 2664 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 = (𝐴↑2))
4726, 46syl5req 2669 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) = (1↑2))
48 nn0ge0 11318 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
4948adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 0 ≤ 𝐴)
5049ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐴)
51 0le1 10551 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
5251a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 1)
53 sq11 12936 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5412, 50, 19, 52, 53syl22anc 1327 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5554adantr 481 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5647, 55mpbid 222 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐴 = 1)
57 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐵 = 0)
5857oveq2d 6666 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = ((√‘𝐷) · 0))
598rpcnd 11874 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℂ)
6059adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (√‘𝐷) ∈ ℂ)
6160mul01d 10235 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 0) = 0)
6258, 61eqtrd 2656 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = 0)
6356, 62oveq12d 6668 . . . . . . . . . . . . 13 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = (1 + 0))
64 1p0e1 11133 . . . . . . . . . . . . 13 (1 + 0) = 1
6563, 64syl6eq 2672 . . . . . . . . . . . 12 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = 1)
6630, 65breqtrd 4679 . . . . . . . . . . 11 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < 1)
6718ltnri 10146 . . . . . . . . . . 11 ¬ 1 < 1
68 pm2.24 121 . . . . . . . . . . 11 (1 < 1 → (¬ 1 < 1 → 1 ≤ 𝐵))
6966, 67, 68mpisyl 21 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 ≤ 𝐵)
70 simplrr 801 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℕ0)
71 elnn0 11294 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
7270, 71sylib 208 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵 ∈ ℕ ∨ 𝐵 = 0))
7329, 69, 72mpjaodan 827 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ 𝐵)
74 nn0ge0 11318 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
7574adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 0 ≤ 𝐵)
7675ad2antlr 763 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐵)
7719, 15, 52, 76le2sqd 13044 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ (1↑2) ≤ (𝐵↑2)))
7873, 77mpbid 222 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) ≤ (𝐵↑2))
7927, 78eqbrtrrd 4677 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ (𝐵↑2))
8019, 20suble0d 10618 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ 1 ≤ (𝐵↑2)))
8179, 80mpbird 247 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ≤ 0)
8221, 23, 2lemul2d 11916 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0)))
8381, 82mpbid 222 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0))
8422, 24, 25, 83leadd2dd 10642 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))) ≤ ((𝐴↑2) + (𝐷 · 0)))
855rpcnd 11874 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℂ)
8685sqsqrtd 14178 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) = (𝐷 + 1))
87 simprr 796 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
8887eqcomd 2628 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
8988oveq2d 6666 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) = (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))))
9015recnd 10068 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℂ)
9190sqcld 13006 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℂ)
9236, 91mulcld 10060 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (𝐵↑2)) ∈ ℂ)
9336, 43, 92addsub12d 10415 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))))
9419recnd 10068 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℂ)
9536, 94, 91subdid 10486 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) = ((𝐷 · 1) − (𝐷 · (𝐵↑2))))
9636mulid1d 10057 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 1) = 𝐷)
9796oveq1d 6665 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐷 · 1) − (𝐷 · (𝐵↑2))) = (𝐷 − (𝐷 · (𝐵↑2))))
9895, 97eqtr2d 2657 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 − (𝐷 · (𝐵↑2))) = (𝐷 · (1 − (𝐵↑2))))
9998oveq2d 6666 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10093, 99eqtrd 2656 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10186, 89, 1003eqtrd 2660 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10236mul01d 10235 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) = 0)
103102oveq2d 6666 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · 0)) = ((𝐴↑2) + 0))
10443addid1d 10236 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + 0) = (𝐴↑2))
105103, 104eqtr2d 2657 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) = ((𝐴↑2) + (𝐷 · 0)))
10684, 101, 1053brtr4d 4685 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) ≤ (𝐴↑2))
1076rpge0d 11876 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ (√‘(𝐷 + 1)))
1087, 12, 107, 50le2sqd 13044 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) ≤ 𝐴 ↔ ((√‘(𝐷 + 1))↑2) ≤ (𝐴↑2)))
109106, 108mpbird 247 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ≤ 𝐴)
11059mulid1d 10057 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 1) = (√‘𝐷))
11119, 15, 8lemul2d 11916 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ ((√‘𝐷) · 1) ≤ ((√‘𝐷) · 𝐵)))
11273, 111mpbid 222 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 1) ≤ ((√‘𝐷) · 𝐵))
113110, 112eqbrtrrd 4677 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ≤ ((√‘𝐷) · 𝐵))
1147, 9, 12, 16, 109, 113le2addd 10646 1 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  cn 11020  2c2 11070  0cn0 11292  +crp 11832  cexp 12860  csqrt 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  pell1qrgap  37438
  Copyright terms: Public domain W3C validator