Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfx2 Structured version   Visualization version   GIF version

Theorem pfx2 41412
Description: A prefix of length 2. (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
pfx2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)

Proof of Theorem pfx2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2nn0 11309 . . . 4 2 ∈ ℕ0
21a1i 11 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → 2 ∈ ℕ0)
3 lencl 13324 . . . 4 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℕ0)
43adantr 481 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → (#‘𝑊) ∈ ℕ0)
5 simpr 477 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → 2 ≤ (#‘𝑊))
6 elfz2nn0 12431 . . 3 (2 ∈ (0...(#‘𝑊)) ↔ (2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)))
72, 4, 5, 6syl3anbrc 1246 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → 2 ∈ (0...(#‘𝑊)))
8 pfxlen 41391 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (#‘(𝑊 prefix 2)) = 2)
9 s2len 13634 . . . . . . 7 (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) = 2
109eqcomi 2631 . . . . . 6 2 = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩)
1110a1i 11 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → 2 = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩))
12 simpl 473 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → 𝑊 ∈ Word 𝑉)
13 simpr 477 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → 2 ∈ (0...(#‘𝑊)))
14 2nn 11185 . . . . . . . . . . . 12 2 ∈ ℕ
15 lbfzo0 12507 . . . . . . . . . . . 12 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
1614, 15mpbir 221 . . . . . . . . . . 11 0 ∈ (0..^2)
1716a1i 11 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → 0 ∈ (0..^2))
1812, 13, 173jca 1242 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊)) ∧ 0 ∈ (0..^2)))
1918adantr 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → (𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊)) ∧ 0 ∈ (0..^2)))
20 pfxfv 41399 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊)) ∧ 0 ∈ (0..^2)) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
2119, 20syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
22 fvex 6201 . . . . . . . 8 (𝑊‘0) ∈ V
23 s2fv0 13632 . . . . . . . 8 ((𝑊‘0) ∈ V → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) = (𝑊‘0))
2422, 23ax-mp 5 . . . . . . 7 (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) = (𝑊‘0)
2521, 24syl6eqr 2674 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0))
26 1nn0 11308 . . . . . . . . . 10 1 ∈ ℕ0
27 1lt2 11194 . . . . . . . . . 10 1 < 2
28 elfzo0 12508 . . . . . . . . . 10 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
2926, 14, 27, 28mpbir3an 1244 . . . . . . . . 9 1 ∈ (0..^2)
30 pfxfv 41399 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊)) ∧ 1 ∈ (0..^2)) → ((𝑊 prefix 2)‘1) = (𝑊‘1))
3129, 30mp3an3 1413 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → ((𝑊 prefix 2)‘1) = (𝑊‘1))
32 fvex 6201 . . . . . . . . 9 (𝑊‘1) ∈ V
33 s2fv1 13633 . . . . . . . . 9 ((𝑊‘1) ∈ V → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1) = (𝑊‘1))
3432, 33ax-mp 5 . . . . . . . 8 (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1) = (𝑊‘1)
3531, 34syl6eqr 2674 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
3635adantr 481 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
37 0nn0 11307 . . . . . . . . 9 0 ∈ ℕ0
3837, 26pm3.2i 471 . . . . . . . 8 (0 ∈ ℕ0 ∧ 1 ∈ ℕ0)
3938a1i 11 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → (0 ∈ ℕ0 ∧ 1 ∈ ℕ0))
40 fveq2 6191 . . . . . . . . 9 (𝑖 = 0 → ((𝑊 prefix 2)‘𝑖) = ((𝑊 prefix 2)‘0))
41 fveq2 6191 . . . . . . . . 9 (𝑖 = 0 → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0))
4240, 41eqeq12d 2637 . . . . . . . 8 (𝑖 = 0 → (((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0)))
43 fveq2 6191 . . . . . . . . 9 (𝑖 = 1 → ((𝑊 prefix 2)‘𝑖) = ((𝑊 prefix 2)‘1))
44 fveq2 6191 . . . . . . . . 9 (𝑖 = 1 → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
4543, 44eqeq12d 2637 . . . . . . . 8 (𝑖 = 1 → (((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1)))
4642, 45ralprg 4234 . . . . . . 7 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ (((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) ∧ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))))
4739, 46syl 17 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → (∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ (((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) ∧ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))))
4825, 36, 47mpbir2and 957 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))
49 eqeq1 2626 . . . . . . 7 ((#‘(𝑊 prefix 2)) = 2 → ((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ↔ 2 = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩)))
50 oveq2 6658 . . . . . . . . 9 ((#‘(𝑊 prefix 2)) = 2 → (0..^(#‘(𝑊 prefix 2))) = (0..^2))
51 fzo0to2pr 12553 . . . . . . . . 9 (0..^2) = {0, 1}
5250, 51syl6eq 2672 . . . . . . . 8 ((#‘(𝑊 prefix 2)) = 2 → (0..^(#‘(𝑊 prefix 2))) = {0, 1})
5352raleqdv 3144 . . . . . . 7 ((#‘(𝑊 prefix 2)) = 2 → (∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
5449, 53anbi12d 747 . . . . . 6 ((#‘(𝑊 prefix 2)) = 2 → (((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)) ↔ (2 = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5554adantl 482 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → (((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)) ↔ (2 = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5611, 48, 55mpbir2and 957 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → ((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
578, 56mpdan 702 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → ((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
58 pfxcl 41386 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 2) ∈ Word 𝑉)
5958adantr 481 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (𝑊 prefix 2) ∈ Word 𝑉)
60 simp2 1062 . . . . . . . . . 10 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → (#‘𝑊) ∈ ℕ0)
61 1red 10055 . . . . . . . . . . . . . . 15 ((#‘𝑊) ∈ ℕ0 → 1 ∈ ℝ)
62 2re 11090 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
6362a1i 11 . . . . . . . . . . . . . . 15 ((#‘𝑊) ∈ ℕ0 → 2 ∈ ℝ)
64 nn0re 11301 . . . . . . . . . . . . . . 15 ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℝ)
6561, 63, 643jca 1242 . . . . . . . . . . . . . 14 ((#‘𝑊) ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ))
66 ltleletr 10130 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ) → ((1 < 2 ∧ 2 ≤ (#‘𝑊)) → 1 ≤ (#‘𝑊)))
6765, 66syl 17 . . . . . . . . . . . . 13 ((#‘𝑊) ∈ ℕ0 → ((1 < 2 ∧ 2 ≤ (#‘𝑊)) → 1 ≤ (#‘𝑊)))
6827, 67mpani 712 . . . . . . . . . . . 12 ((#‘𝑊) ∈ ℕ0 → (2 ≤ (#‘𝑊) → 1 ≤ (#‘𝑊)))
6968imp 445 . . . . . . . . . . 11 (((#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → 1 ≤ (#‘𝑊))
70693adant1 1079 . . . . . . . . . 10 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → 1 ≤ (#‘𝑊))
7160, 70jca 554 . . . . . . . . 9 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → ((#‘𝑊) ∈ ℕ0 ∧ 1 ≤ (#‘𝑊)))
72 elnnnn0c 11338 . . . . . . . . 9 ((#‘𝑊) ∈ ℕ ↔ ((#‘𝑊) ∈ ℕ0 ∧ 1 ≤ (#‘𝑊)))
7371, 72sylibr 224 . . . . . . . 8 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → (#‘𝑊) ∈ ℕ)
746, 73sylbi 207 . . . . . . 7 (2 ∈ (0...(#‘𝑊)) → (#‘𝑊) ∈ ℕ)
75 lbfzo0 12507 . . . . . . 7 (0 ∈ (0..^(#‘𝑊)) ↔ (#‘𝑊) ∈ ℕ)
7674, 75sylibr 224 . . . . . 6 (2 ∈ (0...(#‘𝑊)) → 0 ∈ (0..^(#‘𝑊)))
77 wrdsymbcl 13318 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(#‘𝑊))) → (𝑊‘0) ∈ 𝑉)
7876, 77sylan2 491 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (𝑊‘0) ∈ 𝑉)
7926a1i 11 . . . . . . 7 (2 ∈ (0...(#‘𝑊)) → 1 ∈ ℕ0)
8065adantl 482 . . . . . . . . . . 11 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ))
81 ltletr 10129 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ) → ((1 < 2 ∧ 2 ≤ (#‘𝑊)) → 1 < (#‘𝑊)))
8280, 81syl 17 . . . . . . . . . 10 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0) → ((1 < 2 ∧ 2 ≤ (#‘𝑊)) → 1 < (#‘𝑊)))
8327, 82mpani 712 . . . . . . . . 9 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0) → (2 ≤ (#‘𝑊) → 1 < (#‘𝑊)))
84833impia 1261 . . . . . . . 8 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → 1 < (#‘𝑊))
856, 84sylbi 207 . . . . . . 7 (2 ∈ (0...(#‘𝑊)) → 1 < (#‘𝑊))
86 elfzo0 12508 . . . . . . 7 (1 ∈ (0..^(#‘𝑊)) ↔ (1 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 1 < (#‘𝑊)))
8779, 74, 85, 86syl3anbrc 1246 . . . . . 6 (2 ∈ (0...(#‘𝑊)) → 1 ∈ (0..^(#‘𝑊)))
88 wrdsymbcl 13318 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(#‘𝑊))) → (𝑊‘1) ∈ 𝑉)
8987, 88sylan2 491 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (𝑊‘1) ∈ 𝑉)
9078, 89s2cld 13616 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → ⟨“(𝑊‘0)(𝑊‘1)”⟩ ∈ Word 𝑉)
91 eqwrd 13346 . . . 4 (((𝑊 prefix 2) ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)(𝑊‘1)”⟩ ∈ Word 𝑉) → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
9259, 90, 91syl2anc 693 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
9357, 92mpbird 247 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)
947, 93syldan 487 1 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  {cpr 4179   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   < clt 10074  cle 10075  cn 11020  2c2 11070  0cn0 11292  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  ⟨“cs2 13586   prefix cpfx 41381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593  df-pfx 41382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator