Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfx2 Structured version   Visualization version   Unicode version

Theorem pfx2 41412
Description: A prefix of length 2. (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
pfx2  |-  ( ( W  e. Word  V  /\  2  <_  ( # `  W
) )  ->  ( W prefix  2 )  =  <" ( W `  0
) ( W ` 
1 ) "> )

Proof of Theorem pfx2
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 2nn0 11309 . . . 4  |-  2  e.  NN0
21a1i 11 . . 3  |-  ( ( W  e. Word  V  /\  2  <_  ( # `  W
) )  ->  2  e.  NN0 )
3 lencl 13324 . . . 4  |-  ( W  e. Word  V  ->  ( # `
 W )  e. 
NN0 )
43adantr 481 . . 3  |-  ( ( W  e. Word  V  /\  2  <_  ( # `  W
) )  ->  ( # `
 W )  e. 
NN0 )
5 simpr 477 . . 3  |-  ( ( W  e. Word  V  /\  2  <_  ( # `  W
) )  ->  2  <_  ( # `  W
) )
6 elfz2nn0 12431 . . 3  |-  ( 2  e.  ( 0 ... ( # `  W
) )  <->  ( 2  e.  NN0  /\  ( # `
 W )  e. 
NN0  /\  2  <_  (
# `  W )
) )
72, 4, 5, 6syl3anbrc 1246 . 2  |-  ( ( W  e. Word  V  /\  2  <_  ( # `  W
) )  ->  2  e.  ( 0 ... ( # `
 W ) ) )
8 pfxlen 41391 . . . 4  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
( # `  ( W prefix 
2 ) )  =  2 )
9 s2len 13634 . . . . . . 7  |-  ( # `  <" ( W `
 0 ) ( W `  1 ) "> )  =  2
109eqcomi 2631 . . . . . 6  |-  2  =  ( # `  <" ( W `  0
) ( W ` 
1 ) "> )
1110a1i 11 . . . . 5  |-  ( ( ( W  e. Word  V  /\  2  e.  (
0 ... ( # `  W
) ) )  /\  ( # `  ( W prefix 
2 ) )  =  2 )  ->  2  =  ( # `  <" ( W `  0
) ( W ` 
1 ) "> ) )
12 simpl 473 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  ->  W  e. Word  V )
13 simpr 477 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
2  e.  ( 0 ... ( # `  W
) ) )
14 2nn 11185 . . . . . . . . . . . 12  |-  2  e.  NN
15 lbfzo0 12507 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0..^ 2 )  <->  2  e.  NN )
1614, 15mpbir 221 . . . . . . . . . . 11  |-  0  e.  ( 0..^ 2 )
1716a1i 11 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
0  e.  ( 0..^ 2 ) )
1812, 13, 173jca 1242 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
( W  e. Word  V  /\  2  e.  (
0 ... ( # `  W
) )  /\  0  e.  ( 0..^ 2 ) ) )
1918adantr 481 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  2  e.  (
0 ... ( # `  W
) ) )  /\  ( # `  ( W prefix 
2 ) )  =  2 )  ->  ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `
 W ) )  /\  0  e.  ( 0..^ 2 ) ) )
20 pfxfv 41399 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) )  /\  0  e.  ( 0..^ 2 ) )  ->  ( ( W prefix  2 ) `  0
)  =  ( W `
 0 ) )
2119, 20syl 17 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  2  e.  (
0 ... ( # `  W
) ) )  /\  ( # `  ( W prefix 
2 ) )  =  2 )  ->  (
( W prefix  2 ) `
 0 )  =  ( W `  0
) )
22 fvex 6201 . . . . . . . 8  |-  ( W `
 0 )  e. 
_V
23 s2fv0 13632 . . . . . . . 8  |-  ( ( W `  0 )  e.  _V  ->  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  0 )  =  ( W ` 
0 ) )
2422, 23ax-mp 5 . . . . . . 7  |-  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  0 )  =  ( W ` 
0 )
2521, 24syl6eqr 2674 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  2  e.  (
0 ... ( # `  W
) ) )  /\  ( # `  ( W prefix 
2 ) )  =  2 )  ->  (
( W prefix  2 ) `
 0 )  =  ( <" ( W `  0 )
( W `  1
) "> `  0
) )
26 1nn0 11308 . . . . . . . . . 10  |-  1  e.  NN0
27 1lt2 11194 . . . . . . . . . 10  |-  1  <  2
28 elfzo0 12508 . . . . . . . . . 10  |-  ( 1  e.  ( 0..^ 2 )  <->  ( 1  e. 
NN0  /\  2  e.  NN  /\  1  <  2
) )
2926, 14, 27, 28mpbir3an 1244 . . . . . . . . 9  |-  1  e.  ( 0..^ 2 )
30 pfxfv 41399 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) )  /\  1  e.  ( 0..^ 2 ) )  ->  ( ( W prefix  2 ) `  1
)  =  ( W `
 1 ) )
3129, 30mp3an3 1413 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
( ( W prefix  2
) `  1 )  =  ( W ` 
1 ) )
32 fvex 6201 . . . . . . . . 9  |-  ( W `
 1 )  e. 
_V
33 s2fv1 13633 . . . . . . . . 9  |-  ( ( W `  1 )  e.  _V  ->  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  1 )  =  ( W ` 
1 ) )
3432, 33ax-mp 5 . . . . . . . 8  |-  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  1 )  =  ( W ` 
1 )
3531, 34syl6eqr 2674 . . . . . . 7  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
( ( W prefix  2
) `  1 )  =  ( <" ( W `  0 )
( W `  1
) "> `  1
) )
3635adantr 481 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  2  e.  (
0 ... ( # `  W
) ) )  /\  ( # `  ( W prefix 
2 ) )  =  2 )  ->  (
( W prefix  2 ) `
 1 )  =  ( <" ( W `  0 )
( W `  1
) "> `  1
) )
37 0nn0 11307 . . . . . . . . 9  |-  0  e.  NN0
3837, 26pm3.2i 471 . . . . . . . 8  |-  ( 0  e.  NN0  /\  1  e.  NN0 )
3938a1i 11 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  2  e.  (
0 ... ( # `  W
) ) )  /\  ( # `  ( W prefix 
2 ) )  =  2 )  ->  (
0  e.  NN0  /\  1  e.  NN0 ) )
40 fveq2 6191 . . . . . . . . 9  |-  ( i  =  0  ->  (
( W prefix  2 ) `
 i )  =  ( ( W prefix  2
) `  0 )
)
41 fveq2 6191 . . . . . . . . 9  |-  ( i  =  0  ->  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  i )  =  ( <" ( W `  0 )
( W `  1
) "> `  0
) )
4240, 41eqeq12d 2637 . . . . . . . 8  |-  ( i  =  0  ->  (
( ( W prefix  2
) `  i )  =  ( <" ( W `  0 )
( W `  1
) "> `  i
)  <->  ( ( W prefix 
2 ) `  0
)  =  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  0 )
) )
43 fveq2 6191 . . . . . . . . 9  |-  ( i  =  1  ->  (
( W prefix  2 ) `
 i )  =  ( ( W prefix  2
) `  1 )
)
44 fveq2 6191 . . . . . . . . 9  |-  ( i  =  1  ->  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  i )  =  ( <" ( W `  0 )
( W `  1
) "> `  1
) )
4543, 44eqeq12d 2637 . . . . . . . 8  |-  ( i  =  1  ->  (
( ( W prefix  2
) `  i )  =  ( <" ( W `  0 )
( W `  1
) "> `  i
)  <->  ( ( W prefix 
2 ) `  1
)  =  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  1 )
) )
4642, 45ralprg 4234 . . . . . . 7  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  -> 
( A. i  e. 
{ 0 ,  1 }  ( ( W prefix 
2 ) `  i
)  =  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  i )  <->  ( ( ( W prefix  2
) `  0 )  =  ( <" ( W `  0 )
( W `  1
) "> `  0
)  /\  ( ( W prefix  2 ) `  1
)  =  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  1 )
) ) )
4739, 46syl 17 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  2  e.  (
0 ... ( # `  W
) ) )  /\  ( # `  ( W prefix 
2 ) )  =  2 )  ->  ( A. i  e.  { 0 ,  1 }  (
( W prefix  2 ) `
 i )  =  ( <" ( W `  0 )
( W `  1
) "> `  i
)  <->  ( ( ( W prefix  2 ) ` 
0 )  =  (
<" ( W ` 
0 ) ( W `
 1 ) "> `  0 )  /\  ( ( W prefix  2
) `  1 )  =  ( <" ( W `  0 )
( W `  1
) "> `  1
) ) ) )
4825, 36, 47mpbir2and 957 . . . . 5  |-  ( ( ( W  e. Word  V  /\  2  e.  (
0 ... ( # `  W
) ) )  /\  ( # `  ( W prefix 
2 ) )  =  2 )  ->  A. i  e.  { 0 ,  1 }  ( ( W prefix 
2 ) `  i
)  =  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  i )
)
49 eqeq1 2626 . . . . . . 7  |-  ( (
# `  ( W prefix  2 ) )  =  2  ->  ( ( # `  ( W prefix  2 ) )  =  ( # `  <" ( W `
 0 ) ( W `  1 ) "> )  <->  2  =  ( # `  <" ( W `  0 )
( W `  1
) "> )
) )
50 oveq2 6658 . . . . . . . . 9  |-  ( (
# `  ( W prefix  2 ) )  =  2  ->  ( 0..^ (
# `  ( W prefix  2 ) ) )  =  ( 0..^ 2 ) )
51 fzo0to2pr 12553 . . . . . . . . 9  |-  ( 0..^ 2 )  =  {
0 ,  1 }
5250, 51syl6eq 2672 . . . . . . . 8  |-  ( (
# `  ( W prefix  2 ) )  =  2  ->  ( 0..^ (
# `  ( W prefix  2 ) ) )  =  { 0 ,  1 } )
5352raleqdv 3144 . . . . . . 7  |-  ( (
# `  ( W prefix  2 ) )  =  2  ->  ( A. i  e.  ( 0..^ ( # `  ( W prefix  2 ) ) ) ( ( W prefix  2 ) `  i )  =  (
<" ( W ` 
0 ) ( W `
 1 ) "> `  i )  <->  A. i  e.  { 0 ,  1 }  (
( W prefix  2 ) `
 i )  =  ( <" ( W `  0 )
( W `  1
) "> `  i
) ) )
5449, 53anbi12d 747 . . . . . 6  |-  ( (
# `  ( W prefix  2 ) )  =  2  ->  ( ( (
# `  ( W prefix  2 ) )  =  (
# `  <" ( W `  0 )
( W `  1
) "> )  /\  A. i  e.  ( 0..^ ( # `  ( W prefix  2 ) ) ) ( ( W prefix  2
) `  i )  =  ( <" ( W `  0 )
( W `  1
) "> `  i
) )  <->  ( 2  =  ( # `  <" ( W `  0
) ( W ` 
1 ) "> )  /\  A. i  e. 
{ 0 ,  1 }  ( ( W prefix 
2 ) `  i
)  =  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  i )
) ) )
5554adantl 482 . . . . 5  |-  ( ( ( W  e. Word  V  /\  2  e.  (
0 ... ( # `  W
) ) )  /\  ( # `  ( W prefix 
2 ) )  =  2 )  ->  (
( ( # `  ( W prefix  2 ) )  =  ( # `  <" ( W `  0
) ( W ` 
1 ) "> )  /\  A. i  e.  ( 0..^ ( # `  ( W prefix  2 ) ) ) ( ( W prefix  2 ) `  i )  =  (
<" ( W ` 
0 ) ( W `
 1 ) "> `  i )
)  <->  ( 2  =  ( # `  <" ( W `  0
) ( W ` 
1 ) "> )  /\  A. i  e. 
{ 0 ,  1 }  ( ( W prefix 
2 ) `  i
)  =  ( <" ( W ` 
0 ) ( W `
 1 ) "> `  i )
) ) )
5611, 48, 55mpbir2and 957 . . . 4  |-  ( ( ( W  e. Word  V  /\  2  e.  (
0 ... ( # `  W
) ) )  /\  ( # `  ( W prefix 
2 ) )  =  2 )  ->  (
( # `  ( W prefix 
2 ) )  =  ( # `  <" ( W `  0
) ( W ` 
1 ) "> )  /\  A. i  e.  ( 0..^ ( # `  ( W prefix  2 ) ) ) ( ( W prefix  2 ) `  i )  =  (
<" ( W ` 
0 ) ( W `
 1 ) "> `  i )
) )
578, 56mpdan 702 . . 3  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
( ( # `  ( W prefix  2 ) )  =  ( # `  <" ( W `  0
) ( W ` 
1 ) "> )  /\  A. i  e.  ( 0..^ ( # `  ( W prefix  2 ) ) ) ( ( W prefix  2 ) `  i )  =  (
<" ( W ` 
0 ) ( W `
 1 ) "> `  i )
) )
58 pfxcl 41386 . . . . 5  |-  ( W  e. Word  V  ->  ( W prefix  2 )  e. Word  V
)
5958adantr 481 . . . 4  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
( W prefix  2 )  e. Word  V )
60 simp2 1062 . . . . . . . . . 10  |-  ( ( 2  e.  NN0  /\  ( # `  W )  e.  NN0  /\  2  <_  ( # `  W
) )  ->  ( # `
 W )  e. 
NN0 )
61 1red 10055 . . . . . . . . . . . . . . 15  |-  ( (
# `  W )  e.  NN0  ->  1  e.  RR )
62 2re 11090 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
6362a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
# `  W )  e.  NN0  ->  2  e.  RR )
64 nn0re 11301 . . . . . . . . . . . . . . 15  |-  ( (
# `  W )  e.  NN0  ->  ( # `  W
)  e.  RR )
6561, 63, 643jca 1242 . . . . . . . . . . . . . 14  |-  ( (
# `  W )  e.  NN0  ->  ( 1  e.  RR  /\  2  e.  RR  /\  ( # `  W )  e.  RR ) )
66 ltleletr 10130 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  ( # `
 W )  e.  RR )  ->  (
( 1  <  2  /\  2  <_  ( # `  W ) )  -> 
1  <_  ( # `  W
) ) )
6765, 66syl 17 . . . . . . . . . . . . 13  |-  ( (
# `  W )  e.  NN0  ->  ( (
1  <  2  /\  2  <_  ( # `  W
) )  ->  1  <_  ( # `  W
) ) )
6827, 67mpani 712 . . . . . . . . . . . 12  |-  ( (
# `  W )  e.  NN0  ->  ( 2  <_  ( # `  W
)  ->  1  <_  (
# `  W )
) )
6968imp 445 . . . . . . . . . . 11  |-  ( ( ( # `  W
)  e.  NN0  /\  2  <_  ( # `  W
) )  ->  1  <_  ( # `  W
) )
70693adant1 1079 . . . . . . . . . 10  |-  ( ( 2  e.  NN0  /\  ( # `  W )  e.  NN0  /\  2  <_  ( # `  W
) )  ->  1  <_  ( # `  W
) )
7160, 70jca 554 . . . . . . . . 9  |-  ( ( 2  e.  NN0  /\  ( # `  W )  e.  NN0  /\  2  <_  ( # `  W
) )  ->  (
( # `  W )  e.  NN0  /\  1  <_  ( # `  W
) ) )
72 elnnnn0c 11338 . . . . . . . . 9  |-  ( (
# `  W )  e.  NN  <->  ( ( # `  W )  e.  NN0  /\  1  <_  ( # `  W
) ) )
7371, 72sylibr 224 . . . . . . . 8  |-  ( ( 2  e.  NN0  /\  ( # `  W )  e.  NN0  /\  2  <_  ( # `  W
) )  ->  ( # `
 W )  e.  NN )
746, 73sylbi 207 . . . . . . 7  |-  ( 2  e.  ( 0 ... ( # `  W
) )  ->  ( # `
 W )  e.  NN )
75 lbfzo0 12507 . . . . . . 7  |-  ( 0  e.  ( 0..^ (
# `  W )
)  <->  ( # `  W
)  e.  NN )
7674, 75sylibr 224 . . . . . 6  |-  ( 2  e.  ( 0 ... ( # `  W
) )  ->  0  e.  ( 0..^ ( # `  W ) ) )
77 wrdsymbcl 13318 . . . . . 6  |-  ( ( W  e. Word  V  /\  0  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  0
)  e.  V )
7876, 77sylan2 491 . . . . 5  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
( W `  0
)  e.  V )
7926a1i 11 . . . . . . 7  |-  ( 2  e.  ( 0 ... ( # `  W
) )  ->  1  e.  NN0 )
8065adantl 482 . . . . . . . . . . 11  |-  ( ( 2  e.  NN0  /\  ( # `  W )  e.  NN0 )  -> 
( 1  e.  RR  /\  2  e.  RR  /\  ( # `  W )  e.  RR ) )
81 ltletr 10129 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  ( # `
 W )  e.  RR )  ->  (
( 1  <  2  /\  2  <_  ( # `  W ) )  -> 
1  <  ( # `  W
) ) )
8280, 81syl 17 . . . . . . . . . 10  |-  ( ( 2  e.  NN0  /\  ( # `  W )  e.  NN0 )  -> 
( ( 1  <  2  /\  2  <_ 
( # `  W ) )  ->  1  <  (
# `  W )
) )
8327, 82mpani 712 . . . . . . . . 9  |-  ( ( 2  e.  NN0  /\  ( # `  W )  e.  NN0 )  -> 
( 2  <_  ( # `
 W )  -> 
1  <  ( # `  W
) ) )
84833impia 1261 . . . . . . . 8  |-  ( ( 2  e.  NN0  /\  ( # `  W )  e.  NN0  /\  2  <_  ( # `  W
) )  ->  1  <  ( # `  W
) )
856, 84sylbi 207 . . . . . . 7  |-  ( 2  e.  ( 0 ... ( # `  W
) )  ->  1  <  ( # `  W
) )
86 elfzo0 12508 . . . . . . 7  |-  ( 1  e.  ( 0..^ (
# `  W )
)  <->  ( 1  e. 
NN0  /\  ( # `  W
)  e.  NN  /\  1  <  ( # `  W
) ) )
8779, 74, 85, 86syl3anbrc 1246 . . . . . 6  |-  ( 2  e.  ( 0 ... ( # `  W
) )  ->  1  e.  ( 0..^ ( # `  W ) ) )
88 wrdsymbcl 13318 . . . . . 6  |-  ( ( W  e. Word  V  /\  1  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  1
)  e.  V )
8987, 88sylan2 491 . . . . 5  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
( W `  1
)  e.  V )
9078, 89s2cld 13616 . . . 4  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  ->  <" ( W ` 
0 ) ( W `
 1 ) ">  e. Word  V )
91 eqwrd 13346 . . . 4  |-  ( ( ( W prefix  2 )  e. Word  V  /\  <" ( W `  0
) ( W ` 
1 ) ">  e. Word  V )  ->  (
( W prefix  2 )  =  <" ( W `
 0 ) ( W `  1 ) ">  <->  ( ( # `
 ( W prefix  2
) )  =  (
# `  <" ( W `  0 )
( W `  1
) "> )  /\  A. i  e.  ( 0..^ ( # `  ( W prefix  2 ) ) ) ( ( W prefix  2
) `  i )  =  ( <" ( W `  0 )
( W `  1
) "> `  i
) ) ) )
9259, 90, 91syl2anc 693 . . 3  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
( ( W prefix  2
)  =  <" ( W `  0 )
( W `  1
) ">  <->  ( ( # `
 ( W prefix  2
) )  =  (
# `  <" ( W `  0 )
( W `  1
) "> )  /\  A. i  e.  ( 0..^ ( # `  ( W prefix  2 ) ) ) ( ( W prefix  2
) `  i )  =  ( <" ( W `  0 )
( W `  1
) "> `  i
) ) ) )
9357, 92mpbird 247 . 2  |-  ( ( W  e. Word  V  /\  2  e.  ( 0 ... ( # `  W
) ) )  -> 
( W prefix  2 )  =  <" ( W `
 0 ) ( W `  1 ) "> )
947, 93syldan 487 1  |-  ( ( W  e. Word  V  /\  2  <_  ( # `  W
) )  ->  ( W prefix  2 )  =  <" ( W `  0
) ( W ` 
1 ) "> )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   {cpr 4179   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075   NNcn 11020   2c2 11070   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs2 13586   prefix cpfx 41381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593  df-pfx 41382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator