MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmfac1 Structured version   Visualization version   GIF version

Theorem prmfac1 15431
Description: The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.)
Assertion
Ref Expression
prmfac1 ((𝑁 ∈ ℕ0𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃𝑁)

Proof of Theorem prmfac1
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6 (𝑥 = 0 → (!‘𝑥) = (!‘0))
21breq2d 4665 . . . . 5 (𝑥 = 0 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘0)))
3 breq2 4657 . . . . 5 (𝑥 = 0 → (𝑃𝑥𝑃 ≤ 0))
42, 3imbi12d 334 . . . 4 (𝑥 = 0 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘0) → 𝑃 ≤ 0)))
54imbi2d 330 . . 3 (𝑥 = 0 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘0) → 𝑃 ≤ 0))))
6 fveq2 6191 . . . . . 6 (𝑥 = 𝑘 → (!‘𝑥) = (!‘𝑘))
76breq2d 4665 . . . . 5 (𝑥 = 𝑘 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘𝑘)))
8 breq2 4657 . . . . 5 (𝑥 = 𝑘 → (𝑃𝑥𝑃𝑘))
97, 8imbi12d 334 . . . 4 (𝑥 = 𝑘 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘𝑘) → 𝑃𝑘)))
109imbi2d 330 . . 3 (𝑥 = 𝑘 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑘) → 𝑃𝑘))))
11 fveq2 6191 . . . . . 6 (𝑥 = (𝑘 + 1) → (!‘𝑥) = (!‘(𝑘 + 1)))
1211breq2d 4665 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘(𝑘 + 1))))
13 breq2 4657 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑃𝑥𝑃 ≤ (𝑘 + 1)))
1412, 13imbi12d 334 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))))
1514imbi2d 330 . . 3 (𝑥 = (𝑘 + 1) → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
16 fveq2 6191 . . . . . 6 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1716breq2d 4665 . . . . 5 (𝑥 = 𝑁 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘𝑁)))
18 breq2 4657 . . . . 5 (𝑥 = 𝑁 → (𝑃𝑥𝑃𝑁))
1917, 18imbi12d 334 . . . 4 (𝑥 = 𝑁 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘𝑁) → 𝑃𝑁)))
2019imbi2d 330 . . 3 (𝑥 = 𝑁 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑁) → 𝑃𝑁))))
21 fac0 13063 . . . . 5 (!‘0) = 1
2221breq2i 4661 . . . 4 (𝑃 ∥ (!‘0) ↔ 𝑃 ∥ 1)
23 nprmdvds1 15418 . . . . 5 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
2423pm2.21d 118 . . . 4 (𝑃 ∈ ℙ → (𝑃 ∥ 1 → 𝑃 ≤ 0))
2522, 24syl5bi 232 . . 3 (𝑃 ∈ ℙ → (𝑃 ∥ (!‘0) → 𝑃 ≤ 0))
26 facp1 13065 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
2726adantr 481 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
2827breq2d 4665 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) ↔ 𝑃 ∥ ((!‘𝑘) · (𝑘 + 1))))
29 simpr 477 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
30 faccl 13070 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3130adantr 481 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘𝑘) ∈ ℕ)
3231nnzd 11481 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘𝑘) ∈ ℤ)
33 nn0p1nn 11332 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3433adantr 481 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℕ)
3534nnzd 11481 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℤ)
36 euclemma 15425 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (!‘𝑘) ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑃 ∥ ((!‘𝑘) · (𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
3729, 32, 35, 36syl3anc 1326 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ ((!‘𝑘) · (𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
3828, 37bitrd 268 . . . . . . 7 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
39 nn0re 11301 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
4039adantr 481 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑘 ∈ ℝ)
4140lep1d 10955 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑘 ≤ (𝑘 + 1))
42 prmz 15389 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
4342adantl 482 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℤ)
4443zred 11482 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℝ)
4534nnred 11035 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℝ)
46 letr 10131 . . . . . . . . . . . 12 ((𝑃 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((𝑃𝑘𝑘 ≤ (𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))
4744, 40, 45, 46syl3anc 1326 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃𝑘𝑘 ≤ (𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))
4841, 47mpan2d 710 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃𝑘𝑃 ≤ (𝑘 + 1)))
4948imim2d 57 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘𝑘) → 𝑃 ≤ (𝑘 + 1))))
5049com23 86 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘𝑘) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
51 dvdsle 15032 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ) → (𝑃 ∥ (𝑘 + 1) → 𝑃 ≤ (𝑘 + 1)))
5243, 34, 51syl2anc 693 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (𝑘 + 1) → 𝑃 ≤ (𝑘 + 1)))
5352a1dd 50 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (𝑘 + 1) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5450, 53jaod 395 . . . . . . 7 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1)) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5538, 54sylbid 230 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5655com23 86 . . . . 5 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))))
5756ex 450 . . . 4 (𝑘 ∈ ℕ0 → (𝑃 ∈ ℙ → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
5857a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑘) → 𝑃𝑘)) → (𝑃 ∈ ℙ → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
595, 10, 15, 20, 25, 58nn0ind 11472 . 2 (𝑁 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑁) → 𝑃𝑁)))
60593imp 1256 1 ((𝑁 ∈ ℕ0𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cn 11020  0cn0 11292  cz 11377  !cfa 13060  cdvds 14983  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386
This theorem is referenced by:  prmndvdsfaclt  15435  chtublem  24936  bposlem3  25011
  Copyright terms: Public domain W3C validator