MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem3 Structured version   Visualization version   GIF version

Theorem bposlem3 25011
Description: Lemma for bpos 25018. Since the binomial coefficient does not have any primes in the range (2𝑁 / 3, 𝑁] or (2𝑁, +∞) by bposlem2 25010 and prmfac1 15431, respectively, and it does not have any in the range (𝑁, 2𝑁] by hypothesis, the product of the primes up through 2𝑁 / 3 must be sufficient to compose the whole binomial coefficient. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
Assertion
Ref Expression
bposlem3 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem bposlem3
StepHypRef Expression
1 bpos.3 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
2 simpr 477 . . . . . . . 8 ((𝜑𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
3 5nn 11188 . . . . . . . . . . . 12 5 ∈ ℕ
4 bpos.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (ℤ‘5))
5 eluznn 11758 . . . . . . . . . . . 12 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
63, 4, 5sylancr 695 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
76nnnn0d 11351 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
8 fzctr 12451 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
9 bccl2 13110 . . . . . . . . . 10 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
107, 8, 93syl 18 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
1110adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℕ)
122, 11pccld 15555 . . . . . . 7 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1312ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1413adantr 481 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
15 bpos.4 . . . . . . . . 9 𝐾 = (⌊‘((2 · 𝑁) / 3))
16 2nn 11185 . . . . . . . . . . . . 13 2 ∈ ℕ
17 nnmulcl 11043 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
1816, 6, 17sylancr 695 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℕ)
1918nnred 11035 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℝ)
20 3nn 11186 . . . . . . . . . . 11 3 ∈ ℕ
21 nndivre 11056 . . . . . . . . . . 11 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
2219, 20, 21sylancl 694 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
2322flcld 12599 . . . . . . . . 9 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ ℤ)
2415, 23syl5eqel 2705 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
25 3re 11094 . . . . . . . . . . . . . 14 3 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . 13 (𝜑 → 3 ∈ ℝ)
27 5re 11099 . . . . . . . . . . . . . 14 5 ∈ ℝ
2827a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℝ)
296nnred 11035 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
30 3lt5 11201 . . . . . . . . . . . . . . 15 3 < 5
3125, 27, 30ltleii 10160 . . . . . . . . . . . . . 14 3 ≤ 5
3231a1i 11 . . . . . . . . . . . . 13 (𝜑 → 3 ≤ 5)
33 eluzle 11700 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
344, 33syl 17 . . . . . . . . . . . . 13 (𝜑 → 5 ≤ 𝑁)
3526, 28, 29, 32, 34letrd 10194 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 𝑁)
36 2re 11090 . . . . . . . . . . . . . . 15 2 ∈ ℝ
37 2pos 11112 . . . . . . . . . . . . . . 15 0 < 2
3836, 37pm3.2i 471 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
39 lemul2 10876 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4025, 38, 39mp3an13 1415 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4129, 40syl 17 . . . . . . . . . . . 12 (𝜑 → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4235, 41mpbid 222 . . . . . . . . . . 11 (𝜑 → (2 · 3) ≤ (2 · 𝑁))
43 3pos 11114 . . . . . . . . . . . . . 14 0 < 3
4425, 43pm3.2i 471 . . . . . . . . . . . . 13 (3 ∈ ℝ ∧ 0 < 3)
45 lemuldiv 10903 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4636, 44, 45mp3an13 1415 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℝ → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4719, 46syl 17 . . . . . . . . . . 11 (𝜑 → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4842, 47mpbid 222 . . . . . . . . . 10 (𝜑 → 2 ≤ ((2 · 𝑁) / 3))
49 2z 11409 . . . . . . . . . . 11 2 ∈ ℤ
50 flge 12606 . . . . . . . . . . 11 ((((2 · 𝑁) / 3) ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ ((2 · 𝑁) / 3) ↔ 2 ≤ (⌊‘((2 · 𝑁) / 3))))
5122, 49, 50sylancl 694 . . . . . . . . . 10 (𝜑 → (2 ≤ ((2 · 𝑁) / 3) ↔ 2 ≤ (⌊‘((2 · 𝑁) / 3))))
5248, 51mpbid 222 . . . . . . . . 9 (𝜑 → 2 ≤ (⌊‘((2 · 𝑁) / 3)))
5352, 15syl6breqr 4695 . . . . . . . 8 (𝜑 → 2 ≤ 𝐾)
5449eluz1i 11695 . . . . . . . 8 (𝐾 ∈ (ℤ‘2) ↔ (𝐾 ∈ ℤ ∧ 2 ≤ 𝐾))
5524, 53, 54sylanbrc 698 . . . . . . 7 (𝜑𝐾 ∈ (ℤ‘2))
56 eluz2nn 11726 . . . . . . 7 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
5755, 56syl 17 . . . . . 6 (𝜑𝐾 ∈ ℕ)
5857adantr 481 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝐾 ∈ ℕ)
59 simpr 477 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
60 oveq1 6657 . . . . 5 (𝑛 = 𝑝 → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
611, 14, 58, 59, 60pcmpt 15596 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0))
62 iftrue 4092 . . . . . 6 (𝑝𝐾 → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
6362adantl 482 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
64 iffalse 4095 . . . . . . 7 𝑝𝐾 → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
6564adantl 482 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
6624zred 11482 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
67 prmz 15389 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
6867zred 11482 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
69 ltnle 10117 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝐾 < 𝑝 ↔ ¬ 𝑝𝐾))
7066, 68, 69syl2an 494 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (𝐾 < 𝑝 ↔ ¬ 𝑝𝐾))
7170biimpar 502 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → 𝐾 < 𝑝)
726ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑁 ∈ ℕ)
73 simplr 792 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℙ)
7436a1i 11 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 ∈ ℝ)
7566ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝐾 ∈ ℝ)
7667ad2antlr 763 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℤ)
7776zred 11482 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℝ)
7853ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 ≤ 𝐾)
79 simprl 794 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝐾 < 𝑝)
8074, 75, 77, 78, 79lelttrd 10195 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 < 𝑝)
8115, 79syl5eqbrr 4689 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (⌊‘((2 · 𝑁) / 3)) < 𝑝)
8222ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → ((2 · 𝑁) / 3) ∈ ℝ)
83 fllt 12607 . . . . . . . . . . . 12 ((((2 · 𝑁) / 3) ∈ ℝ ∧ 𝑝 ∈ ℤ) → (((2 · 𝑁) / 3) < 𝑝 ↔ (⌊‘((2 · 𝑁) / 3)) < 𝑝))
8482, 76, 83syl2anc 693 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (((2 · 𝑁) / 3) < 𝑝 ↔ (⌊‘((2 · 𝑁) / 3)) < 𝑝))
8581, 84mpbird 247 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → ((2 · 𝑁) / 3) < 𝑝)
86 simprr 796 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝𝑁)
8772, 73, 80, 85, 86bposlem2 25010 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
8887expr 643 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝𝑁 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
89 rspe 3003 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9089adantll 750 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
91 bpos.2 . . . . . . . . . . . . . 14 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9291ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9390, 92pm2.21dd 186 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
9493expr 643 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
9510nnzd 11481 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℤ)
96 faccl 13070 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
977, 96syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘𝑁) ∈ ℕ)
9897, 97nnmulcld 11068 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℕ)
9998nnzd 11481 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℤ)
100 dvdsmul1 15003 . . . . . . . . . . . . . . . . . . 19 ((((2 · 𝑁)C𝑁) ∈ ℤ ∧ ((!‘𝑁) · (!‘𝑁)) ∈ ℤ) → ((2 · 𝑁)C𝑁) ∥ (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))))
10195, 99, 100syl2anc 693 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · 𝑁)C𝑁) ∥ (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))))
102 bcctr 25000 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
1037, 102syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
104103oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))) = (((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))) · ((!‘𝑁) · (!‘𝑁))))
10518nnnn0d 11351 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (2 · 𝑁) ∈ ℕ0)
106 faccl 13070 . . . . . . . . . . . . . . . . . . . . . 22 ((2 · 𝑁) ∈ ℕ0 → (!‘(2 · 𝑁)) ∈ ℕ)
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘(2 · 𝑁)) ∈ ℕ)
108107nncnd 11036 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (!‘(2 · 𝑁)) ∈ ℂ)
10998nncnd 11036 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℂ)
11098nnne0d 11065 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ≠ 0)
111108, 109, 110divcan1d 10802 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))) · ((!‘𝑁) · (!‘𝑁))) = (!‘(2 · 𝑁)))
112104, 111eqtrd 2656 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))) = (!‘(2 · 𝑁)))
113101, 112breqtrd 4679 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁)))
114113adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁)))
11567adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
11695adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℤ)
117107nnzd 11481 . . . . . . . . . . . . . . . . . 18 (𝜑 → (!‘(2 · 𝑁)) ∈ ℤ)
118117adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (!‘(2 · 𝑁)) ∈ ℤ)
119 dvdstr 15018 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℤ ∧ ((2 · 𝑁)C𝑁) ∈ ℤ ∧ (!‘(2 · 𝑁)) ∈ ℤ) → ((𝑝 ∥ ((2 · 𝑁)C𝑁) ∧ ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁))) → 𝑝 ∥ (!‘(2 · 𝑁))))
120115, 116, 118, 119syl3anc 1326 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ ((2 · 𝑁)C𝑁) ∧ ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁))) → 𝑝 ∥ (!‘(2 · 𝑁))))
121114, 120mpan2d 710 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((2 · 𝑁)C𝑁) → 𝑝 ∥ (!‘(2 · 𝑁))))
122 prmfac1 15431 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℕ0𝑝 ∈ ℙ ∧ 𝑝 ∥ (!‘(2 · 𝑁))) → 𝑝 ≤ (2 · 𝑁))
1231223expia 1267 . . . . . . . . . . . . . . . 16 (((2 · 𝑁) ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(2 · 𝑁)) → 𝑝 ≤ (2 · 𝑁)))
124105, 123sylan 488 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(2 · 𝑁)) → 𝑝 ≤ (2 · 𝑁)))
125121, 124syld 47 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((2 · 𝑁)C𝑁) → 𝑝 ≤ (2 · 𝑁)))
126125con3d 148 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝 ≤ (2 · 𝑁) → ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
127 id 22 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
128 pceq0 15575 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0 ↔ ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
129127, 10, 128syl2anr 495 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0 ↔ ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
130126, 129sylibrd 249 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
131130adantr 481 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (¬ 𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
13294, 131pm2.61d 170 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
133132ex 450 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑁 < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
134133adantr 481 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑁 < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
135 lelttric 10144 . . . . . . . . . 10 ((𝑝 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑝𝑁𝑁 < 𝑝))
13668, 29, 135syl2anr 495 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑝𝑁𝑁 < 𝑝))
137136adantr 481 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝𝑁𝑁 < 𝑝))
13888, 134, 137mpjaod 396 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
13971, 138syldan 487 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
14065, 139eqtr4d 2659 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
14163, 140pm2.61dan 832 . . . 4 ((𝜑𝑝 ∈ ℙ) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
14261, 141eqtrd 2656 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
143142ralrimiva 2966 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
1441, 13pcmptcl 15595 . . . . . 6 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
145144simprd 479 . . . . 5 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
146145, 57ffvelrnd 6360 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ)
147146nnnn0d 11351 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ0)
14810nnnn0d 11351 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ0)
149 pc11 15584 . . 3 (((seq1( · , 𝐹)‘𝐾) ∈ ℕ0 ∧ ((2 · 𝑁)C𝑁) ∈ ℕ0) → ((seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁))))
150147, 148, 149syl2anc 693 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁))))
151143, 150mpbird 247 1 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  ifcif 4086   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  5c5 11073  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  cfl 12591  seqcseq 12801  cexp 12860  !cfa 13060  Ccbc 13089  cdvds 14983  cprime 15385   pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542
This theorem is referenced by:  bposlem6  25014
  Copyright terms: Public domain W3C validator