![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmgaplcm | Structured version Visualization version GIF version |
Description: Alternate proof of prmgap 15763: in contrast to prmgap 15763, where the gap starts at n! , the factorial of n, the gap starts at the least common multiple of all positive integers less than or equal to n. (Contributed by AV, 13-Aug-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prmgaplcm | ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ) | |
2 | fzssz 12343 | . . . . . . . 8 ⊢ (1...𝑥) ⊆ ℤ | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → (1...𝑥) ⊆ ℤ) |
4 | fzfi 12771 | . . . . . . . 8 ⊢ (1...𝑥) ∈ Fin | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → (1...𝑥) ∈ Fin) |
6 | 0nelfz1 12360 | . . . . . . . 8 ⊢ 0 ∉ (1...𝑥) | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 0 ∉ (1...𝑥)) |
8 | lcmfn0cl 15339 | . . . . . . 7 ⊢ (((1...𝑥) ⊆ ℤ ∧ (1...𝑥) ∈ Fin ∧ 0 ∉ (1...𝑥)) → (lcm‘(1...𝑥)) ∈ ℕ) | |
9 | 3, 5, 7, 8 | syl3anc 1326 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → (lcm‘(1...𝑥)) ∈ ℕ) |
10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (lcm‘(1...𝑥)) ∈ ℕ) |
11 | eqid 2622 | . . . . 5 ⊢ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) | |
12 | 10, 11 | fmptd 6385 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ) |
13 | nnex 11026 | . . . . . 6 ⊢ ℕ ∈ V | |
14 | 13, 13 | pm3.2i 471 | . . . . 5 ⊢ (ℕ ∈ V ∧ ℕ ∈ V) |
15 | elmapg 7870 | . . . . 5 ⊢ ((ℕ ∈ V ∧ ℕ ∈ V) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑𝑚 ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ)) | |
16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑛 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑𝑚 ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ)) |
17 | 12, 16 | mpbird 247 | . . 3 ⊢ (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑𝑚 ℕ)) |
18 | prmgaplcmlem2 15756 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖)) | |
19 | eqidd 2623 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))) | |
20 | oveq2 6658 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑛 → (1...𝑥) = (1...𝑛)) | |
21 | 20 | fveq2d 6195 | . . . . . . . . 9 ⊢ (𝑥 = 𝑛 → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛))) |
22 | 21 | adantl 482 | . . . . . . . 8 ⊢ (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑥 = 𝑛) → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛))) |
23 | simpl 473 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 𝑛 ∈ ℕ) | |
24 | fzssz 12343 | . . . . . . . . . 10 ⊢ (1...𝑛) ⊆ ℤ | |
25 | fzfi 12771 | . . . . . . . . . 10 ⊢ (1...𝑛) ∈ Fin | |
26 | 24, 25 | pm3.2i 471 | . . . . . . . . 9 ⊢ ((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin) |
27 | lcmfcl 15341 | . . . . . . . . 9 ⊢ (((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin) → (lcm‘(1...𝑛)) ∈ ℕ0) | |
28 | 26, 27 | mp1i 13 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (lcm‘(1...𝑛)) ∈ ℕ0) |
29 | 19, 22, 23, 28 | fvmptd 6288 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) = (lcm‘(1...𝑛))) |
30 | 29 | oveq1d 6665 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) = ((lcm‘(1...𝑛)) + 𝑖)) |
31 | 30 | oveq1d 6665 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖) = (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖)) |
32 | 18, 31 | breqtrrd 4681 | . . . 4 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖)) |
33 | 32 | ralrimiva 2966 | . . 3 ⊢ (𝑛 ∈ ℕ → ∀𝑖 ∈ (2...𝑛)1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖)) |
34 | 1, 17, 33 | prmgaplem8 15762 | . 2 ⊢ (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) |
35 | 34 | rgen 2922 | 1 ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∉ wnel 2897 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ⊆ wss 3574 class class class wbr 4653 ↦ cmpt 4729 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 Fincfn 7955 0cc0 9936 1c1 9937 + caddc 9939 < clt 10074 ≤ cle 10075 − cmin 10266 ℕcn 11020 2c2 11070 ℕ0cn0 11292 ℤcz 11377 ...cfz 12326 ..^cfzo 12465 gcd cgcd 15216 lcmclcmf 15302 ℙcprime 15385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-fac 13061 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-prod 14636 df-dvds 14984 df-gcd 15217 df-lcmf 15304 df-prm 15386 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |