MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfrec Structured version   Visualization version   GIF version

Theorem prodfrec 14627
Description: The reciprocal of an infinite product. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
prodfn0.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfn0.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
prodfn0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≠ 0)
prodfrec.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) = (1 / (𝐹𝑘)))
Assertion
Ref Expression
prodfrec (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝐺

Proof of Theorem prodfrec
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfn0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 12349 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 6191 . . . . 5 (𝑚 = 𝑀 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑀))
5 fveq2 6191 . . . . . 6 (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀))
65oveq2d 6666 . . . . 5 (𝑚 = 𝑀 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))
74, 6eqeq12d 2637 . . . 4 (𝑚 = 𝑀 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀))))
87imbi2d 330 . . 3 (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))))
9 fveq2 6191 . . . . 5 (𝑚 = 𝑛 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑛))
10 fveq2 6191 . . . . . 6 (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛))
1110oveq2d 6666 . . . . 5 (𝑚 = 𝑛 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑛)))
129, 11eqeq12d 2637 . . . 4 (𝑚 = 𝑛 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))))
1312imbi2d 330 . . 3 (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)))))
14 fveq2 6191 . . . . 5 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘(𝑛 + 1)))
15 fveq2 6191 . . . . . 6 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
1615oveq2d 6666 . . . . 5 (𝑚 = (𝑛 + 1) → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))
1714, 16eqeq12d 2637 . . . 4 (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))))
1817imbi2d 330 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
19 fveq2 6191 . . . . 5 (𝑚 = 𝑁 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑁))
20 fveq2 6191 . . . . . 6 (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁))
2120oveq2d 6666 . . . . 5 (𝑚 = 𝑁 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
2219, 21eqeq12d 2637 . . . 4 (𝑚 = 𝑁 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))))
2322imbi2d 330 . . 3 (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))))
24 eluzfz1 12348 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
251, 24syl 17 . . . . . 6 (𝜑𝑀 ∈ (𝑀...𝑁))
26 fveq2 6191 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐺𝑘) = (𝐺𝑀))
27 fveq2 6191 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2827oveq2d 6666 . . . . . . . . 9 (𝑘 = 𝑀 → (1 / (𝐹𝑘)) = (1 / (𝐹𝑀)))
2926, 28eqeq12d 2637 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐺𝑘) = (1 / (𝐹𝑘)) ↔ (𝐺𝑀) = (1 / (𝐹𝑀))))
3029imbi2d 330 . . . . . . 7 (𝑘 = 𝑀 → ((𝜑 → (𝐺𝑘) = (1 / (𝐹𝑘))) ↔ (𝜑 → (𝐺𝑀) = (1 / (𝐹𝑀)))))
31 prodfrec.4 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) = (1 / (𝐹𝑘)))
3231expcom 451 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐺𝑘) = (1 / (𝐹𝑘))))
3330, 32vtoclga 3272 . . . . . 6 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐺𝑀) = (1 / (𝐹𝑀))))
3425, 33mpcom 38 . . . . 5 (𝜑 → (𝐺𝑀) = (1 / (𝐹𝑀)))
35 eluzel2 11692 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
361, 35syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
37 seq1 12814 . . . . . 6 (𝑀 ∈ ℤ → (seq𝑀( · , 𝐺)‘𝑀) = (𝐺𝑀))
3836, 37syl 17 . . . . 5 (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (𝐺𝑀))
39 seq1 12814 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
4036, 39syl 17 . . . . . 6 (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
4140oveq2d 6666 . . . . 5 (𝜑 → (1 / (seq𝑀( · , 𝐹)‘𝑀)) = (1 / (𝐹𝑀)))
4234, 38, 413eqtr4d 2666 . . . 4 (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))
4342a1i 11 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀))))
44 oveq1 6657 . . . . . . . . 9 ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))))
45443ad2ant3 1084 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))))
46 fzofzp1 12565 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
47 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
48 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
4948oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (1 / (𝐹𝑘)) = (1 / (𝐹‘(𝑛 + 1))))
5047, 49eqeq12d 2637 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝐺𝑘) = (1 / (𝐹𝑘)) ↔ (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))))
5150imbi2d 330 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐺𝑘) = (1 / (𝐹𝑘))) ↔ (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))))
5251, 32vtoclga 3272 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))))
5346, 52syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))))
5453impcom 446 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))
5554oveq2d 6666 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))))
56 1cnd 10056 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
57 elfzouz 12474 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
5857adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
59 elfzouz2 12484 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝑛))
60 fzss2 12381 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
6159, 60syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀..^𝑁) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
6261sselda 3603 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (𝑀...𝑁))
63 prodfn0.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
6462, 63sylan2 491 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛))) → (𝐹𝑘) ∈ ℂ)
6564anassrs 680 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
66 mulcl 10020 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
6766adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
6858, 65, 67seqcl 12821 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
6948eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
7069imbi2d 330 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)))
7163expcom 451 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ∈ ℂ))
7270, 71vtoclga 3272 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
7346, 72syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
7473impcom 446 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
75 prodfn0.3 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≠ 0)
7662, 75sylan2 491 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛))) → (𝐹𝑘) ≠ 0)
7776anassrs 680 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ≠ 0)
7858, 65, 77prodfn0 14626 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0)
7948neeq1d 2853 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ≠ 0 ↔ (𝐹‘(𝑛 + 1)) ≠ 0))
8079imbi2d 330 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ≠ 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0)))
8175expcom 451 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ≠ 0))
8280, 81vtoclga 3272 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0))
8346, 82syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0))
8483impcom 446 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ≠ 0)
8556, 68, 56, 74, 78, 84divmuldivd 10842 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))) = ((1 · 1) / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
86 1t1e1 11175 . . . . . . . . . . . 12 (1 · 1) = 1
8786oveq1i 6660 . . . . . . . . . . 11 ((1 · 1) / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
8885, 87syl6eq 2672 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
8955, 88eqtrd 2656 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
90893adant3 1081 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
9145, 90eqtrd 2656 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
92 seqp1 12816 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))))
9357, 92syl 17 . . . . . . . 8 (𝑛 ∈ (𝑀..^𝑁) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))))
94933ad2ant2 1083 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))))
95 seqp1 12816 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
9657, 95syl 17 . . . . . . . . 9 (𝑛 ∈ (𝑀..^𝑁) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
9796oveq2d 6666 . . . . . . . 8 (𝑛 ∈ (𝑀..^𝑁) → (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
98973ad2ant2 1083 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
9991, 94, 983eqtr4d 2666 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))
100993exp 1264 . . . . 5 (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
101100com12 32 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
102101a2d 29 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
1038, 13, 18, 23, 43, 102fzind2 12586 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))))
1043, 103mpcom 38 1 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wss 3574  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   / cdiv 10684  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802
This theorem is referenced by:  prodfdiv  14628
  Copyright terms: Public domain W3C validator