MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfrec Structured version   Visualization version   Unicode version

Theorem prodfrec 14627
Description: The reciprocal of an infinite product. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
prodfn0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfn0.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
prodfn0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =/=  0
)
prodfrec.4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) )
Assertion
Ref Expression
prodfrec  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
Distinct variable groups:    k, F    ph, k    k, M    k, N    k, G

Proof of Theorem prodfrec
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfn0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 12349 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 17 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 6191 . . . . 5  |-  ( m  =  M  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  M
) )
5 fveq2 6191 . . . . . 6  |-  ( m  =  M  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  M
) )
65oveq2d 6666 . . . . 5  |-  ( m  =  M  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) )
74, 6eqeq12d 2637 . . . 4  |-  ( m  =  M  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  M
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  M )
) ) )
87imbi2d 330 . . 3  |-  ( m  =  M  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) ) ) )
9 fveq2 6191 . . . . 5  |-  ( m  =  n  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  n
) )
10 fveq2 6191 . . . . . 6  |-  ( m  =  n  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  n
) )
1110oveq2d 6666 . . . . 5  |-  ( m  =  n  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )
129, 11eqeq12d 2637 . . . 4  |-  ( m  =  n  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  n
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  n )
) ) )
1312imbi2d 330 . . 3  |-  ( m  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) ) ) )
14 fveq2 6191 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  (
n  +  1 ) ) )
15 fveq2 6191 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
1615oveq2d 6666 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) )
1714, 16eqeq12d 2637 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  (
n  +  1 ) )  =  ( 1  /  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) ) ) )
1817imbi2d 330 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 ( n  + 
1 ) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
19 fveq2 6191 . . . . 5  |-  ( m  =  N  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  N
) )
20 fveq2 6191 . . . . . 6  |-  ( m  =  N  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  N
) )
2120oveq2d 6666 . . . . 5  |-  ( m  =  N  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
2219, 21eqeq12d 2637 . . . 4  |-  ( m  =  N  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  N
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  N )
) ) )
2322imbi2d 330 . . 3  |-  ( m  =  N  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) ) ) )
24 eluzfz1 12348 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
251, 24syl 17 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
26 fveq2 6191 . . . . . . . . 9  |-  ( k  =  M  ->  ( G `  k )  =  ( G `  M ) )
27 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2827oveq2d 6666 . . . . . . . . 9  |-  ( k  =  M  ->  (
1  /  ( F `
 k ) )  =  ( 1  / 
( F `  M
) ) )
2926, 28eqeq12d 2637 . . . . . . . 8  |-  ( k  =  M  ->  (
( G `  k
)  =  ( 1  /  ( F `  k ) )  <->  ( G `  M )  =  ( 1  /  ( F `
 M ) ) ) )
3029imbi2d 330 . . . . . . 7  |-  ( k  =  M  ->  (
( ph  ->  ( G `
 k )  =  ( 1  /  ( F `  k )
) )  <->  ( ph  ->  ( G `  M
)  =  ( 1  /  ( F `  M ) ) ) ) )
31 prodfrec.4 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) )
3231expcom 451 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) ) )
3330, 32vtoclga 3272 . . . . . 6  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  ( G `  M )  =  ( 1  /  ( F `
 M ) ) ) )
3425, 33mpcom 38 . . . . 5  |-  ( ph  ->  ( G `  M
)  =  ( 1  /  ( F `  M ) ) )
35 eluzel2 11692 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
361, 35syl 17 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
37 seq1 12814 . . . . . 6  |-  ( M  e.  ZZ  ->  (  seq M (  x.  ,  G ) `  M
)  =  ( G `
 M ) )
3836, 37syl 17 . . . . 5  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( G `  M
) )
39 seq1 12814 . . . . . . 7  |-  ( M  e.  ZZ  ->  (  seq M (  x.  ,  F ) `  M
)  =  ( F `
 M ) )
4036, 39syl 17 . . . . . 6  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 M )  =  ( F `  M
) )
4140oveq2d 6666 . . . . 5  |-  ( ph  ->  ( 1  /  (  seq M (  x.  ,  F ) `  M
) )  =  ( 1  /  ( F `
 M ) ) )
4234, 38, 413eqtr4d 2666 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) )
4342a1i 11 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) ) )
44 oveq1 6657 . . . . . . . . 9  |-  ( (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  ->  (
(  seq M (  x.  ,  G ) `  n )  x.  ( G `  ( n  +  1 ) ) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  x.  ( G `  ( n  +  1 ) ) ) )
45443ad2ant3 1084 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  G
) `  n )  x.  ( G `  (
n  +  1 ) ) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  x.  ( G `  ( n  +  1 ) ) ) )
46 fzofzp1 12565 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
47 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
48 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
4948oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
1  /  ( F `
 k ) )  =  ( 1  / 
( F `  (
n  +  1 ) ) ) )
5047, 49eqeq12d 2637 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( G `  k
)  =  ( 1  /  ( F `  k ) )  <->  ( G `  ( n  +  1 ) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) ) )
5150imbi2d 330 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( G `
 k )  =  ( 1  /  ( F `  k )
) )  <->  ( ph  ->  ( G `  (
n  +  1 ) )  =  ( 1  /  ( F `  ( n  +  1
) ) ) ) ) )
5251, 32vtoclga 3272 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( G `  ( n  +  1
) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) ) )
5346, 52syl 17 . . . . . . . . . . . 12  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( G `  (
n  +  1 ) )  =  ( 1  /  ( F `  ( n  +  1
) ) ) ) )
5453impcom 446 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) )
5554oveq2d 6666 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( G `
 ( n  + 
1 ) ) )  =  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) ) )
56 1cnd 10056 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  1  e.  CC )
57 elfzouz 12474 . . . . . . . . . . . . . 14  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
5857adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
59 elfzouz2 12484 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( M..^ N
)  ->  N  e.  ( ZZ>= `  n )
)
60 fzss2 12381 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  n
)  ->  ( M ... n )  C_  ( M ... N ) )
6159, 60syl 17 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( M..^ N
)  ->  ( M ... n )  C_  ( M ... N ) )
6261sselda 3603 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n
) )  ->  k  e.  ( M ... N
) )
63 prodfn0.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
6462, 63sylan2 491 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n ) ) )  ->  ( F `  k )  e.  CC )
6564anassrs 680 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  k  e.  ( M ... n
) )  ->  ( F `  k )  e.  CC )
66 mulcl 10020 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
6766adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
6858, 65, 67seqcl 12821 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
6948eleq1d 2686 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
7069imbi2d 330 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  e.  CC )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) ) )
7163expcom 451 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  e.  CC ) )
7270, 71vtoclga 3272 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  e.  CC ) )
7346, 72syl 17 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) )
7473impcom 446 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  CC )
75 prodfn0.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =/=  0
)
7662, 75sylan2 491 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n ) ) )  ->  ( F `  k )  =/=  0 )
7776anassrs 680 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  k  e.  ( M ... n
) )  ->  ( F `  k )  =/=  0 )
7858, 65, 77prodfn0 14626 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  =/=  0 )
7948neeq1d 2853 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  =/=  0  <->  ( F `  ( n  +  1 ) )  =/=  0 ) )
8079imbi2d 330 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  =/=  0 )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  =/=  0 ) ) )
8175expcom 451 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  =/=  0
) )
8280, 81vtoclga 3272 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  =/=  0
) )
8346, 82syl 17 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  =/=  0 ) )
8483impcom 446 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  =/=  0
)
8556, 68, 56, 74, 78, 84divmuldivd 10842 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) )  =  ( ( 1  x.  1 )  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
86 1t1e1 11175 . . . . . . . . . . . 12  |-  ( 1  x.  1 )  =  1
8786oveq1i 6660 . . . . . . . . . . 11  |-  ( ( 1  x.  1 )  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )
8885, 87syl6eq 2672 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) )  =  ( 1  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
8955, 88eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( G `
 ( n  + 
1 ) ) )  =  ( 1  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
90893adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  x.  ( G `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
9145, 90eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  G
) `  n )  x.  ( G `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
92 seqp1 12816 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  x.  ,  G ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  G ) `  n )  x.  ( G `  ( n  +  1 ) ) ) )
9357, 92syl 17 . . . . . . . 8  |-  ( n  e.  ( M..^ N
)  ->  (  seq M (  x.  ,  G ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  G ) `  n )  x.  ( G `  ( n  +  1 ) ) ) )
94933ad2ant2 1083 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  G ) `
 n )  x.  ( G `  (
n  +  1 ) ) ) )
95 seqp1 12816 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
9657, 95syl 17 . . . . . . . . 9  |-  ( n  e.  ( M..^ N
)  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
9796oveq2d 6666 . . . . . . . 8  |-  ( n  e.  ( M..^ N
)  ->  ( 1  /  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) ) )
98973ad2ant2 1083 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
9991, 94, 983eqtr4d 2666 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) )
100993exp 1264 . . . . 5  |-  ( ph  ->  ( n  e.  ( M..^ N )  -> 
( (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
101100com12 32 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
102101a2d 29 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  ->  ( ph  ->  (  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
1038, 13, 18, 23, 43, 102fzind2 12586 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  G
) `  N )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  N ) ) ) )
1043, 103mpcom 38 1  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    / cdiv 10684   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802
This theorem is referenced by:  prodfdiv  14628
  Copyright terms: Public domain W3C validator