| Step | Hyp | Ref
| Expression |
| 1 | | repswlen 13523 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
(#‘(𝑆 repeatS 𝑁)) = 𝑁) |
| 2 | 1 | oveq2d 6666 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
(0..^(#‘(𝑆 repeatS
𝑁))) = (0..^𝑁)) |
| 3 | 2 | mpteq1d 4738 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(#‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)))) |
| 4 | | simpll 790 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆 ∈ 𝑉) |
| 5 | | simplr 792 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈
ℕ0) |
| 6 | 1 | adantr 481 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (#‘(𝑆 repeatS 𝑁)) = 𝑁) |
| 7 | 6 | oveq1d 6665 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((#‘(𝑆 repeatS 𝑁)) − 1) = (𝑁 − 1)) |
| 8 | 7 | oveq1d 6665 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) = ((𝑁 − 1) − 𝑥)) |
| 9 | | ubmelm1fzo 12564 |
. . . . . . . 8
⊢ (𝑥 ∈ (0..^𝑁) → ((𝑁 − 𝑥) − 1) ∈ (0..^𝑁)) |
| 10 | | elfzoelz 12470 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ) |
| 11 | | nn0cn 11302 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
| 12 | 11 | ad2antll 765 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤ ∧ (𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈
ℂ) |
| 13 | | zcn 11382 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
| 14 | 13 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤ ∧ (𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑥 ∈
ℂ) |
| 15 | | 1cnd 10056 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤ ∧ (𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 1
∈ ℂ) |
| 16 | 12, 14, 15 | sub32d 10424 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤ ∧ (𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ((𝑁 − 𝑥) − 1) = ((𝑁 − 1) − 𝑥)) |
| 17 | 16 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ (𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) →
(((𝑁 − 𝑥) − 1) ∈ (0..^𝑁) ↔ ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))) |
| 18 | 17 | biimpd 219 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ (𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) →
(((𝑁 − 𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))) |
| 19 | 18 | ex 450 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤ → ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (((𝑁 − 𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))) |
| 20 | 10, 19 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ (0..^𝑁) → ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (((𝑁 − 𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))) |
| 21 | 9, 20 | mpid 44 |
. . . . . . 7
⊢ (𝑥 ∈ (0..^𝑁) → ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))) |
| 22 | 21 | impcom 446 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)) |
| 23 | 8, 22 | eqeltrd 2701 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁)) |
| 24 | | repswsymb 13521 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧
(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆) |
| 25 | 4, 5, 23, 24 | syl3anc 1326 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆) |
| 26 | 25 | mpteq2dva 4744 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
| 27 | 3, 26 | eqtrd 2656 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(#‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
| 28 | | ovex 6678 |
. . 3
⊢ (𝑆 repeatS 𝑁) ∈ V |
| 29 | | revval 13509 |
. . 3
⊢ ((𝑆 repeatS 𝑁) ∈ V → (reverse‘(𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^(#‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)))) |
| 30 | 28, 29 | mp1i 13 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
(reverse‘(𝑆 repeatS
𝑁)) = (𝑥 ∈ (0..^(#‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)))) |
| 31 | | reps 13517 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
| 32 | 27, 30, 31 | 3eqtr4d 2666 |
1
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
(reverse‘(𝑆 repeatS
𝑁)) = (𝑆 repeatS 𝑁)) |