| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 2 | | resscntz.y |
. . . . . . 7
⊢ 𝑌 = (Cntz‘𝐻) |
| 3 | 1, 2 | cntzrcl 17760 |
. . . . . 6
⊢ (𝑥 ∈ (𝑌‘𝑆) → (𝐻 ∈ V ∧ 𝑆 ⊆ (Base‘𝐻))) |
| 4 | 3 | simprd 479 |
. . . . 5
⊢ (𝑥 ∈ (𝑌‘𝑆) → 𝑆 ⊆ (Base‘𝐻)) |
| 5 | | resscntz.p |
. . . . . 6
⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| 6 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 7 | 5, 6 | ressbasss 15932 |
. . . . 5
⊢
(Base‘𝐻)
⊆ (Base‘𝐺) |
| 8 | 4, 7 | syl6ss 3615 |
. . . 4
⊢ (𝑥 ∈ (𝑌‘𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
| 9 | 8 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑥 ∈ (𝑌‘𝑆) → 𝑆 ⊆ (Base‘𝐺))) |
| 10 | | inss1 3833 |
. . . . . 6
⊢ ((𝑍‘𝑆) ∩ 𝐴) ⊆ (𝑍‘𝑆) |
| 11 | 10 | sseli 3599 |
. . . . 5
⊢ (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) → 𝑥 ∈ (𝑍‘𝑆)) |
| 12 | | resscntz.z |
. . . . . . 7
⊢ 𝑍 = (Cntz‘𝐺) |
| 13 | 6, 12 | cntzrcl 17760 |
. . . . . 6
⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺))) |
| 14 | 13 | simprd 479 |
. . . . 5
⊢ (𝑥 ∈ (𝑍‘𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
| 15 | 11, 14 | syl 17 |
. . . 4
⊢ (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺)) |
| 16 | 15 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺))) |
| 17 | | anass 681 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
| 18 | | elin 3796 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (Base‘𝐺))) |
| 19 | 5, 6 | ressbas 15930 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐺)) = (Base‘𝐻)) |
| 20 | 19 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻))) |
| 21 | 18, 20 | syl5bbr 274 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻))) |
| 22 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 23 | 5, 22 | ressplusg 15993 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (+g‘𝐺) = (+g‘𝐻)) |
| 24 | 23 | oveqd 6667 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 25 | 23 | oveqd 6667 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (𝑦(+g‘𝐺)𝑥) = (𝑦(+g‘𝐻)𝑥)) |
| 26 | 24, 25 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
| 27 | 26 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
| 28 | 21, 27 | anbi12d 747 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥)))) |
| 29 | 28 | ad2antrr 762 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥)))) |
| 30 | 17, 29 | syl5rbbr 275 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))))) |
| 31 | | ssin 3835 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (𝐴 ∩ (Base‘𝐺))) |
| 32 | 19 | sseq2d 3633 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻))) |
| 33 | 31, 32 | syl5bb 272 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ((𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻))) |
| 34 | 33 | biimpd 219 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ((𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻))) |
| 35 | 34 | impl 650 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻)) |
| 36 | | eqid 2622 |
. . . . . . 7
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 37 | 1, 36, 2 | elcntz 17755 |
. . . . . 6
⊢ (𝑆 ⊆ (Base‘𝐻) → (𝑥 ∈ (𝑌‘𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥)))) |
| 38 | 35, 37 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌‘𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥)))) |
| 39 | | elin 3796 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) ↔ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑥 ∈ 𝐴)) |
| 40 | | ancom 466 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑍‘𝑆) ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝑍‘𝑆))) |
| 41 | 39, 40 | bitri 264 |
. . . . . 6
⊢ (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝑍‘𝑆))) |
| 42 | 6, 22, 12 | elcntz 17755 |
. . . . . . . 8
⊢ (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍‘𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
| 43 | 42 | adantl 482 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑍‘𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
| 44 | 43 | anbi2d 740 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝑍‘𝑆)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))))) |
| 45 | 41, 44 | syl5bb 272 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))))) |
| 46 | 30, 38, 45 | 3bitr4d 300 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌‘𝑆) ↔ 𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴))) |
| 47 | 46 | ex 450 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑌‘𝑆) ↔ 𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴)))) |
| 48 | 9, 16, 47 | pm5.21ndd 369 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑥 ∈ (𝑌‘𝑆) ↔ 𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴))) |
| 49 | 48 | eqrdv 2620 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑌‘𝑆) = ((𝑍‘𝑆) ∩ 𝐴)) |