MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdmdprd Structured version   Visualization version   GIF version

Theorem subgdmdprd 18433
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
subgdprd.1 𝐻 = (𝐺s 𝐴)
Assertion
Ref Expression
subgdmdprd (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))

Proof of Theorem subgdmdprd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 18396 . . . 4 Rel dom DProd
21brrelex2i 5159 . . 3 (𝐻dom DProd 𝑆𝑆 ∈ V)
32a1i 11 . 2 (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆𝑆 ∈ V))
41brrelex2i 5159 . . . 4 (𝐺dom DProd 𝑆𝑆 ∈ V)
54adantr 481 . . 3 ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) → 𝑆 ∈ V)
65a1i 11 . 2 (𝐴 ∈ (SubGrp‘𝐺) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) → 𝑆 ∈ V))
7 ffvelrn 6357 . . . . . . . . . . . . . . . 16 ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ 𝑥 ∈ dom 𝑆) → (𝑆𝑥) ∈ (SubGrp‘𝐻))
87ad2ant2lr 784 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ∈ (SubGrp‘𝐻))
9 eqid 2622 . . . . . . . . . . . . . . . 16 (Base‘𝐻) = (Base‘𝐻)
109subgss 17595 . . . . . . . . . . . . . . 15 ((𝑆𝑥) ∈ (SubGrp‘𝐻) → (𝑆𝑥) ⊆ (Base‘𝐻))
118, 10syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ⊆ (Base‘𝐻))
12 subgdprd.1 . . . . . . . . . . . . . . . 16 𝐻 = (𝐺s 𝐴)
1312subgbas 17598 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
1413ad2antrr 762 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝐴 = (Base‘𝐻))
1511, 14sseqtr4d 3642 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ⊆ 𝐴)
1615biantrud 528 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴)))
17 simpll 790 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝐴 ∈ (SubGrp‘𝐺))
18 simplr 792 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝑆:dom 𝑆⟶(SubGrp‘𝐻))
19 eldifi 3732 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (dom 𝑆 ∖ {𝑥}) → 𝑦 ∈ dom 𝑆)
2019ad2antll 765 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝑦 ∈ dom 𝑆)
2118, 20ffvelrnd 6360 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ∈ (SubGrp‘𝐻))
229subgss 17595 . . . . . . . . . . . . . . . . 17 ((𝑆𝑦) ∈ (SubGrp‘𝐻) → (𝑆𝑦) ⊆ (Base‘𝐻))
2321, 22syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ⊆ (Base‘𝐻))
2423, 14sseqtr4d 3642 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ⊆ 𝐴)
25 eqid 2622 . . . . . . . . . . . . . . . 16 (Cntz‘𝐺) = (Cntz‘𝐺)
26 eqid 2622 . . . . . . . . . . . . . . . 16 (Cntz‘𝐻) = (Cntz‘𝐻)
2712, 25, 26resscntz 17764 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (SubGrp‘𝐺) ∧ (𝑆𝑦) ⊆ 𝐴) → ((Cntz‘𝐻)‘(𝑆𝑦)) = (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
2817, 24, 27syl2anc 693 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((Cntz‘𝐻)‘(𝑆𝑦)) = (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
2928sseq2d 3633 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴)))
30 ssin 3835 . . . . . . . . . . . . 13 (((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴) ↔ (𝑆𝑥) ⊆ (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
3129, 30syl6bbr 278 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ↔ ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴)))
3216, 31bitr4d 271 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
3332anassrs 680 . . . . . . . . . 10 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥})) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
3433ralbidva 2985 . . . . . . . . 9 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ ∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
35 subgrcl 17599 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3635ad2antrr 762 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐺 ∈ Grp)
37 eqid 2622 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
3837subgacs 17629 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
39 acsmre 16313 . . . . . . . . . . . . . 14 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4036, 38, 393syl 18 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4112subggrp 17597 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
4241ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐻 ∈ Grp)
439subgacs 17629 . . . . . . . . . . . . . . 15 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
44 acsmre 16313 . . . . . . . . . . . . . . 15 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
4542, 43, 443syl 18 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
46 eqid 2622 . . . . . . . . . . . . . 14 (mrCls‘(SubGrp‘𝐻)) = (mrCls‘(SubGrp‘𝐻))
47 imassrn 5477 . . . . . . . . . . . . . . . . 17 (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ran 𝑆
48 frn 6053 . . . . . . . . . . . . . . . . . 18 (𝑆:dom 𝑆⟶(SubGrp‘𝐻) → ran 𝑆 ⊆ (SubGrp‘𝐻))
4948ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ran 𝑆 ⊆ (SubGrp‘𝐻))
5047, 49syl5ss 3614 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (SubGrp‘𝐻))
51 mresspw 16252 . . . . . . . . . . . . . . . . 17 ((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
5245, 51syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
5350, 52sstrd 3613 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐻))
54 sspwuni 4611 . . . . . . . . . . . . . . 15 ((𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐻) ↔ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻))
5553, 54sylib 208 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻))
5645, 46, 55mrcssidd 16285 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
5746mrccl 16271 . . . . . . . . . . . . . . . 16 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
5845, 55, 57syl2anc 693 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
5912subsubg 17617 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
6059ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
6158, 60mpbid 222 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴))
6261simpld 475 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
63 eqid 2622 . . . . . . . . . . . . . 14 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
6463mrcsscl 16280 . . . . . . . . . . . . 13 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
6540, 56, 62, 64syl3anc 1326 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
6613ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 = (Base‘𝐻))
6755, 66sseqtr4d 3642 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝐴)
6837subgss 17595 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
6968ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 ⊆ (Base‘𝐺))
7067, 69sstrd 3613 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐺))
7140, 63, 70mrcssidd 16285 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
7263mrccl 16271 . . . . . . . . . . . . . . 15 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
7340, 70, 72syl2anc 693 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
74 simpll 790 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 ∈ (SubGrp‘𝐺))
7563mrcsscl 16280 . . . . . . . . . . . . . . 15 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝐴𝐴 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)
7640, 67, 74, 75syl3anc 1326 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)
7712subsubg 17617 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
7877ad2antrr 762 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
7973, 76, 78mpbir2and 957 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
8046mrcsscl 16280 . . . . . . . . . . . . 13 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8145, 71, 79, 80syl3anc 1326 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8265, 81eqssd 3620 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) = ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8382ineq2d 3814 . . . . . . . . . 10 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))))
84 eqid 2622 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
8512, 84subg0 17600 . . . . . . . . . . . 12 (𝐴 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
8685ad2antrr 762 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (0g𝐺) = (0g𝐻))
8786sneqd 4189 . . . . . . . . . 10 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → {(0g𝐺)} = {(0g𝐻)})
8883, 87eqeq12d 2637 . . . . . . . . 9 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)} ↔ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))
8934, 88anbi12d 747 . . . . . . . 8 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}) ↔ (∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))
9089ralbidva 2985 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) → (∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}) ↔ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))
9190pm5.32da 673 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
9212subsubg 17617 . . . . . . . . . . . . 13 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴)))
93 elin 3796 . . . . . . . . . . . . . 14 (𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝒫 𝐴))
94 selpw 4165 . . . . . . . . . . . . . . 15 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
9594anbi2i 730 . . . . . . . . . . . . . 14 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴))
9693, 95bitri 264 . . . . . . . . . . . . 13 (𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴))
9792, 96syl6bbr 278 . . . . . . . . . . . 12 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ 𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴)))
9897eqrdv 2620 . . . . . . . . . . 11 (𝐴 ∈ (SubGrp‘𝐺) → (SubGrp‘𝐻) = ((SubGrp‘𝐺) ∩ 𝒫 𝐴))
9998sseq2d 3633 . . . . . . . . . 10 (𝐴 ∈ (SubGrp‘𝐺) → (ran 𝑆 ⊆ (SubGrp‘𝐻) ↔ ran 𝑆 ⊆ ((SubGrp‘𝐺) ∩ 𝒫 𝐴)))
100 ssin 3835 . . . . . . . . . 10 ((ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ran 𝑆 ⊆ ((SubGrp‘𝐺) ∩ 𝒫 𝐴))
10199, 100syl6bbr 278 . . . . . . . . 9 (𝐴 ∈ (SubGrp‘𝐺) → (ran 𝑆 ⊆ (SubGrp‘𝐻) ↔ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
102101anbi2d 740 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐻)) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴))))
103 df-f 5892 . . . . . . . 8 (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ↔ (𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐻)))
104 df-f 5892 . . . . . . . . . 10 (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ (𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)))
105104anbi1i 731 . . . . . . . . 9 ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)) ∧ ran 𝑆 ⊆ 𝒫 𝐴))
106 anass 681 . . . . . . . . 9 (((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
107105, 106bitri 264 . . . . . . . 8 ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
108102, 103, 1073bitr4g 303 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
109108anbi1d 741 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
11091, 109bitr3d 270 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
111110adantr 481 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
112 dmexg 7097 . . . . . 6 (𝑆 ∈ V → dom 𝑆 ∈ V)
113112adantl 482 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → dom 𝑆 ∈ V)
114 eqidd 2623 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → dom 𝑆 = dom 𝑆)
11541adantr 481 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → 𝐻 ∈ Grp)
116 eqid 2622 . . . . . . . 8 (0g𝐻) = (0g𝐻)
11726, 116, 46dmdprd 18397 . . . . . . 7 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐻dom DProd 𝑆 ↔ (𝐻 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
118 3anass 1042 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ (𝐻 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
119117, 118syl6bb 276 . . . . . 6 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐻dom DProd 𝑆 ↔ (𝐻 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))))
120119baibd 948 . . . . 5 (((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) ∧ 𝐻 ∈ Grp) → (𝐻dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
121113, 114, 115, 120syl21anc 1325 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐻dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
12235adantr 481 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → 𝐺 ∈ Grp)
12325, 84, 63dmdprd 18397 . . . . . . . . 9 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
124 3anass 1042 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ (𝐺 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
125123, 124syl6bb 276 . . . . . . . 8 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))))
126125baibd 948 . . . . . . 7 (((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) ∧ 𝐺 ∈ Grp) → (𝐺dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
127113, 114, 122, 126syl21anc 1325 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐺dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
128127anbi1d 741 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
129 an32 839 . . . . 5 (((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))
130128, 129syl6bb 276 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
131111, 121, 1303bitr4d 300 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
132131ex 450 . 2 (𝐴 ∈ (SubGrp‘𝐺) → (𝑆 ∈ V → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))))
1333, 6, 132pm5.21ndd 369 1 (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177   cuni 4436   class class class wbr 4653  dom cdm 5114  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  s cress 15858  0gc0g 16100  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245  Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-cntz 17750  df-dprd 18394
This theorem is referenced by:  subgdprd  18434  ablfaclem3  18486
  Copyright terms: Public domain W3C validator