Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubclem3 Structured version   Visualization version   GIF version

Theorem rhmsubclem3 42088
Description: Lemma 3 for rhmsubc 42090. (Contributed by AV, 2-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubclem3 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑈(𝑥)   𝐻(𝑥)   𝑉(𝑥)

Proof of Theorem rhmsubclem3
StepHypRef Expression
1 rngcrescrhm.r . . . . . 6 (𝜑𝑅 = (Ring ∩ 𝑈))
21eleq2d 2687 . . . . 5 (𝜑 → (𝑥𝑅𝑥 ∈ (Ring ∩ 𝑈)))
3 elinel1 3799 . . . . 5 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring)
42, 3syl6bi 243 . . . 4 (𝜑 → (𝑥𝑅𝑥 ∈ Ring))
54imp 445 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ Ring)
6 eqid 2622 . . . 4 (Base‘𝑥) = (Base‘𝑥)
76idrhm 18731 . . 3 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
85, 7syl 17 . 2 ((𝜑𝑥𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
9 rngcrescrhm.c . . 3 𝐶 = (RngCat‘𝑈)
10 eqid 2622 . . 3 (Base‘𝐶) = (Base‘𝐶)
119eqcomi 2631 . . . 4 (RngCat‘𝑈) = 𝐶
1211fveq2i 6194 . . 3 (Id‘(RngCat‘𝑈)) = (Id‘𝐶)
13 rngcrescrhm.u . . . 4 (𝜑𝑈𝑉)
1413adantr 481 . . 3 ((𝜑𝑥𝑅) → 𝑈𝑉)
15 incom 3805 . . . . . 6 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
16 ringssrng 41880 . . . . . . 7 Ring ⊆ Rng
17 sslin 3839 . . . . . . 7 (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
1816, 17mp1i 13 . . . . . 6 (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
1915, 18syl5eqss 3649 . . . . 5 (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng))
209, 10, 13rngcbas 41965 . . . . 5 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
2119, 1, 203sstr4d 3648 . . . 4 (𝜑𝑅 ⊆ (Base‘𝐶))
2221sselda 3603 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘𝐶))
239, 10, 12, 14, 22, 6rngcid 41979 . 2 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
24 rngcrescrhm.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
2513, 9, 1, 24rhmsubclem2 42087 . . 3 ((𝜑𝑥𝑅𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
26253anidm23 1385 . 2 ((𝜑𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
278, 23, 263eltr4d 2716 1 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cin 3573  wss 3574   I cid 5023   × cxp 5112  cres 5116  cfv 5888  (class class class)co 6650  Basecbs 15857  Idccid 16326  Ringcrg 18547   RingHom crh 18712  Rngcrng 41874  RngCatcrngc 41957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-hom 15966  df-cco 15967  df-0g 16102  df-cat 16329  df-cid 16330  df-homf 16331  df-ssc 16470  df-resc 16471  df-subc 16472  df-estrc 16763  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-rnghom 18715  df-mgmhm 41779  df-rng0 41875  df-rnghomo 41887  df-rngc 41959
This theorem is referenced by:  rhmsubc  42090
  Copyright terms: Public domain W3C validator