| Step | Hyp | Ref
| Expression |
| 1 | | ringccatidALTV.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝑈 ∈ 𝑉 → 𝐵 = (Base‘𝐶)) |
| 3 | | eqidd 2623 |
. 2
⊢ (𝑈 ∈ 𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶)) |
| 4 | | eqidd 2623 |
. 2
⊢ (𝑈 ∈ 𝑉 → (comp‘𝐶) = (comp‘𝐶)) |
| 5 | | ringccatALTV.c |
. . . 4
⊢ 𝐶 = (RingCatALTV‘𝑈) |
| 6 | | fvex 6201 |
. . . 4
⊢
(RingCatALTV‘𝑈) ∈ V |
| 7 | 5, 6 | eqeltri 2697 |
. . 3
⊢ 𝐶 ∈ V |
| 8 | 7 | a1i 11 |
. 2
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
| 9 | | biid 251 |
. 2
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) |
| 10 | | simpl 473 |
. . . . . 6
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
| 11 | 5, 1, 10 | ringcbasALTV 42046 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (𝑈 ∩ Ring)) |
| 12 | | eleq2 2690 |
. . . . . . . 8
⊢ (𝐵 = (𝑈 ∩ Ring) → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Ring))) |
| 13 | | elin 3796 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑈 ∩ Ring) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring)) |
| 14 | 13 | simprbi 480 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑈 ∩ Ring) → 𝑥 ∈ Ring) |
| 15 | 12, 14 | syl6bi 243 |
. . . . . . 7
⊢ (𝐵 = (𝑈 ∩ Ring) → (𝑥 ∈ 𝐵 → 𝑥 ∈ Ring)) |
| 16 | 15 | com12 32 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 → (𝐵 = (𝑈 ∩ Ring) → 𝑥 ∈ Ring)) |
| 17 | 16 | adantl 482 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (𝐵 = (𝑈 ∩ Ring) → 𝑥 ∈ Ring)) |
| 18 | 11, 17 | mpd 15 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Ring) |
| 19 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑥) =
(Base‘𝑥) |
| 20 | 19 | idrhm 18731 |
. . . 4
⊢ (𝑥 ∈ Ring → ( I ↾
(Base‘𝑥)) ∈
(𝑥 RingHom 𝑥)) |
| 21 | 18, 20 | syl 17 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
| 22 | | eqid 2622 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 23 | | simpr 477 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 24 | 5, 1, 10, 22, 23, 23 | ringchomALTV 42048 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥 RingHom 𝑥)) |
| 25 | 21, 24 | eleqtrrd 2704 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
| 26 | | simpl 473 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈 ∈ 𝑉) |
| 27 | | eqid 2622 |
. . . 4
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 28 | | simpl 473 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑤 ∈ 𝐵) |
| 29 | 28 | 3ad2ant1 1082 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑤 ∈ 𝐵) |
| 30 | 29 | adantl 482 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤 ∈ 𝐵) |
| 31 | | simpr 477 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 32 | 31 | 3ad2ant1 1082 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ 𝐵) |
| 33 | 32 | adantl 482 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥 ∈ 𝐵) |
| 34 | | simp1 1061 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑈 ∈ 𝑉) |
| 35 | 28 | 3ad2ant3 1084 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
| 36 | 31 | 3ad2ant3 1084 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 37 | 5, 1, 34, 22, 35, 36 | ringchomALTV 42048 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑤(Hom ‘𝐶)𝑥) = (𝑤 RingHom 𝑥)) |
| 38 | 37 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓 ∈ (𝑤 RingHom 𝑥))) |
| 39 | 38 | biimpd 219 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RingHom 𝑥))) |
| 40 | 39 | 3exp 1264 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝑉 → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓 ∈ (𝑤 RingHom 𝑥))))) |
| 41 | 40 | com14 96 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RingHom 𝑥))))) |
| 42 | 41 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RingHom 𝑥))))) |
| 43 | 42 | com13 88 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RingHom 𝑥))))) |
| 44 | 43 | 3imp 1256 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → 𝑓 ∈ (𝑤 RingHom 𝑥))) |
| 45 | 44 | impcom 446 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤 RingHom 𝑥)) |
| 46 | 21 | expcom 451 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))) |
| 47 | 46 | adantl 482 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))) |
| 48 | 47 | 3ad2ant1 1082 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))) |
| 49 | 48 | impcom 446 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
| 50 | 5, 1, 26, 27, 30, 33, 33, 45, 49 | ringccoALTV 42051 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = (( I ↾ (Base‘𝑥)) ∘ 𝑓)) |
| 51 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑈 ∈ 𝑉) |
| 52 | | simprl 794 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
| 53 | | simprr 796 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 54 | 5, 1, 51, 22, 52, 53 | elringchomALTV 42049 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥))) |
| 55 | 54 | ex 450 |
. . . . . . . . . 10
⊢ (𝑈 ∈ 𝑉 → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))) |
| 56 | 55 | com13 88 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))) |
| 57 | | fcoi2 6079 |
. . . . . . . . 9
⊢ (𝑓:(Base‘𝑤)⟶(Base‘𝑥) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓) |
| 58 | 56, 57 | syl8 76 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))) |
| 59 | 58 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))) |
| 60 | 59 | com12 32 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓))) |
| 61 | 60 | a1d 25 |
. . . . 5
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)))) |
| 62 | 61 | 3imp 1256 |
. . . 4
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)) |
| 63 | 62 | impcom 446 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓) |
| 64 | 50, 63 | eqtrd 2656 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
| 65 | | simp3 1063 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑈 ∈ 𝑉) |
| 66 | 31 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 67 | 66 | 3ad2ant2 1083 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑥 ∈ 𝐵) |
| 68 | | simprl 794 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 69 | 68 | 3ad2ant2 1083 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑦 ∈ 𝐵) |
| 70 | 47 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))) |
| 71 | 70 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)))) |
| 72 | 71 | 3imp 1256 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
| 73 | | simpl 473 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → 𝑈 ∈ 𝑉) |
| 74 | 66 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → 𝑥 ∈ 𝐵) |
| 75 | 68 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → 𝑦 ∈ 𝐵) |
| 76 | 5, 1, 73, 22, 74, 75 | ringchomALTV 42048 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RingHom 𝑦)) |
| 77 | 76 | eleq2d 2687 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RingHom 𝑦))) |
| 78 | 77 | biimpd 219 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦))) |
| 79 | 78 | ex 450 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑉 → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦)))) |
| 80 | 79 | com13 88 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RingHom 𝑦)))) |
| 81 | 80 | 3imp 1256 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑔 ∈ (𝑥 RingHom 𝑦)) |
| 82 | 5, 1, 65, 27, 67, 67, 69, 72, 81 | ringccoALTV 42051 |
. . . . . . . 8
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = (𝑔 ∘ ( I ↾ (Base‘𝑥)))) |
| 83 | 5, 1, 73, 22, 74, 75 | elringchomALTV 42049 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))) |
| 84 | 83 | ex 450 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑉 → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))) |
| 85 | 84 | com13 88 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))) |
| 86 | 85 | 3imp 1256 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)) |
| 87 | | fcoi1 6078 |
. . . . . . . . 9
⊢ (𝑔:(Base‘𝑥)⟶(Base‘𝑦) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔) |
| 88 | 86, 87 | syl 17 |
. . . . . . . 8
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔) |
| 89 | 82, 88 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑈 ∈ 𝑉) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔) |
| 90 | 89 | 3exp 1264 |
. . . . . 6
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))) |
| 91 | 90 | 3ad2ant2 1083 |
. . . . 5
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔))) |
| 92 | 91 | expdcom 455 |
. . . 4
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)))) |
| 93 | 92 | 3imp 1256 |
. . 3
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)) |
| 94 | 93 | impcom 446 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔) |
| 95 | | simpl 473 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 96 | 95 | 3ad2ant2 1083 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 97 | 5, 1, 34, 22, 36, 96 | ringchomALTV 42048 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 RingHom 𝑦)) |
| 98 | 97 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔 ∈ (𝑥 RingHom 𝑦))) |
| 99 | 98 | biimpd 219 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦))) |
| 100 | 99 | 3exp 1264 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝑉 → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → 𝑔 ∈ (𝑥 RingHom 𝑦))))) |
| 101 | 100 | com14 96 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RingHom 𝑦))))) |
| 102 | 101 | 3ad2ant2 1083 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RingHom 𝑦))))) |
| 103 | 102 | com13 88 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RingHom 𝑦))))) |
| 104 | 103 | 3imp 1256 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → 𝑔 ∈ (𝑥 RingHom 𝑦))) |
| 105 | 104 | impcom 446 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥 RingHom 𝑦)) |
| 106 | | rhmco 18737 |
. . . 4
⊢ ((𝑔 ∈ (𝑥 RingHom 𝑦) ∧ 𝑓 ∈ (𝑤 RingHom 𝑥)) → (𝑔 ∘ 𝑓) ∈ (𝑤 RingHom 𝑦)) |
| 107 | 105, 45, 106 | syl2anc 693 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘ 𝑓) ∈ (𝑤 RingHom 𝑦)) |
| 108 | 95 | 3ad2ant2 1083 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ 𝐵) |
| 109 | 108 | adantl 482 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦 ∈ 𝐵) |
| 110 | 5, 1, 26, 27, 30, 33, 109, 45, 105 | ringccoALTV 42051 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) = (𝑔 ∘ 𝑓)) |
| 111 | 5, 1, 26, 22, 30, 109 | ringchomALTV 42048 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑤(Hom ‘𝐶)𝑦) = (𝑤 RingHom 𝑦)) |
| 112 | 107, 110,
111 | 3eltr4d 2716 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦)) |
| 113 | | coass 5654 |
. . . 4
⊢ ((ℎ ∘ 𝑔) ∘ 𝑓) = (ℎ ∘ (𝑔 ∘ 𝑓)) |
| 114 | | simp2r 1088 |
. . . . . 6
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ 𝐵) |
| 115 | 114 | adantl 482 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧 ∈ 𝐵) |
| 116 | | simp2r 1088 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
| 117 | 5, 1, 34, 22, 96, 116 | ringchomALTV 42048 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦 RingHom 𝑧)) |
| 118 | 117 | eleq2d 2687 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ ℎ ∈ (𝑦 RingHom 𝑧))) |
| 119 | 118 | biimpd 219 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) → ℎ ∈ (𝑦 RingHom 𝑧))) |
| 120 | 119 | 3exp 1264 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑉 → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) → ℎ ∈ (𝑦 RingHom 𝑧))))) |
| 121 | 120 | com14 96 |
. . . . . . . . . 10
⊢ (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RingHom 𝑧))))) |
| 122 | 121 | 3ad2ant3 1084 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RingHom 𝑧))))) |
| 123 | 122 | com13 88 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RingHom 𝑧))))) |
| 124 | 123 | 3imp 1256 |
. . . . . . 7
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈 ∈ 𝑉 → ℎ ∈ (𝑦 RingHom 𝑧))) |
| 125 | 124 | impcom 446 |
. . . . . 6
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ℎ ∈ (𝑦 RingHom 𝑧)) |
| 126 | | rhmco 18737 |
. . . . . 6
⊢ ((ℎ ∈ (𝑦 RingHom 𝑧) ∧ 𝑔 ∈ (𝑥 RingHom 𝑦)) → (ℎ ∘ 𝑔) ∈ (𝑥 RingHom 𝑧)) |
| 127 | 125, 105,
126 | syl2anc 693 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ ∘ 𝑔) ∈ (𝑥 RingHom 𝑧)) |
| 128 | 5, 1, 26, 27, 30, 33, 115, 45, 127 | ringccoALTV 42051 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = ((ℎ ∘ 𝑔) ∘ 𝑓)) |
| 129 | 5, 1, 26, 27, 30, 109, 115, 107, 125 | ringccoALTV 42051 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓)) = (ℎ ∘ (𝑔 ∘ 𝑓))) |
| 130 | 113, 128,
129 | 3eqtr4a 2682 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓))) |
| 131 | 5, 1, 26, 27, 33, 109, 115, 105, 125 | ringccoALTV 42051 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) = (ℎ ∘ 𝑔)) |
| 132 | 131 | oveq1d 6665 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓)) |
| 133 | 110 | oveq2d 6666 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓)) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓))) |
| 134 | 130, 132,
133 | 3eqtr4d 2666 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓))) |
| 135 | 2, 3, 4, 8, 9, 25,
64, 94, 112, 134 | iscatd2 16342 |
1
⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) |