![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmspecnonsq | Structured version Visualization version GIF version |
Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
Ref | Expression |
---|---|
rmspecnonsq | ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 11697 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℤ) | |
2 | zsqcl 12934 | . . . . 5 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℤ) |
4 | 1zzd 11408 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℤ) | |
5 | 3, 4 | zsubcld 11487 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℤ) |
6 | sq1 12958 | . . . . 5 ⊢ (1↑2) = 1 | |
7 | eluz2b2 11761 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴)) | |
8 | 7 | simprbi 480 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) |
9 | 1red 10055 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
10 | eluzelre 11698 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
11 | 0le1 10551 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ 1) |
13 | eluzge2nn0 11727 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ0) | |
14 | 13 | nn0ge0d 11354 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ 𝐴) |
15 | 9, 10, 12, 14 | lt2sqd 13043 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2))) |
16 | 8, 15 | mpbid 222 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1↑2) < (𝐴↑2)) |
17 | 6, 16 | syl5eqbrr 4689 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < (𝐴↑2)) |
18 | 10 | resqcld 13035 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℝ) |
19 | 9, 18 | posdifd 10614 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1))) |
20 | 17, 19 | mpbid 222 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 < ((𝐴↑2) − 1)) |
21 | elnnz 11387 | . . 3 ⊢ (((𝐴↑2) − 1) ∈ ℕ ↔ (((𝐴↑2) − 1) ∈ ℤ ∧ 0 < ((𝐴↑2) − 1))) | |
22 | 5, 20, 21 | sylanbrc 698 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
23 | rmspecsqrtnq 37470 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | |
24 | 23 | eldifbd 3587 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ) |
25 | 24 | intnand 962 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
26 | df-squarenn 37405 | . . . . 5 ⊢ ◻NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} | |
27 | 26 | eleq2i 2693 | . . . 4 ⊢ (((𝐴↑2) − 1) ∈ ◻NN ↔ ((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}) |
28 | fveq2 6191 | . . . . . 6 ⊢ (𝑎 = ((𝐴↑2) − 1) → (√‘𝑎) = (√‘((𝐴↑2) − 1))) | |
29 | 28 | eleq1d 2686 | . . . . 5 ⊢ (𝑎 = ((𝐴↑2) − 1) → ((√‘𝑎) ∈ ℚ ↔ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
30 | 29 | elrab 3363 | . . . 4 ⊢ (((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} ↔ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
31 | 27, 30 | bitr2i 265 | . . 3 ⊢ ((((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ) ↔ ((𝐴↑2) − 1) ∈ ◻NN) |
32 | 25, 31 | sylnib 318 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ ((𝐴↑2) − 1) ∈ ◻NN) |
33 | 22, 32 | eldifd 3585 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 ∖ cdif 3571 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 0cc0 9936 1c1 9937 < clt 10074 ≤ cle 10075 − cmin 10266 ℕcn 11020 2c2 11070 ℤcz 11377 ℤ≥cuz 11687 ℚcq 11788 ↑cexp 12860 √csqrt 13973 ◻NNcsquarenn 37400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-numer 15443 df-denom 15444 df-squarenn 37405 |
This theorem is referenced by: rmspecfund 37474 rmxyelqirr 37475 rmxycomplete 37482 rmbaserp 37484 rmxyneg 37485 rmxm1 37499 rmxluc 37501 rmxdbl 37504 ltrmxnn0 37516 jm2.19lem1 37556 jm2.23 37563 rmxdiophlem 37582 |
Copyright terms: Public domain | W3C validator |