Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecfund Structured version   Visualization version   GIF version

Theorem rmspecfund 37474
Description: The base of exponent used to define the X and Y sequences is the fundamental solution of the corresponding Pell equation. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecfund (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))

Proof of Theorem rmspecfund
StepHypRef Expression
1 rmspecnonsq 37472 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2 eluzelz 11697 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
3 zsqcl 12934 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
42, 3syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℤ)
54zred 11482 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
6 1red 10055 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
75, 6resubcld 10458 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ)
8 sq1 12958 . . . . . . . . . . . . 13 (1↑2) = 1
98a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (1↑2) = 1)
10 eluz2b2 11761 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
1110simprbi 480 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
12 eluzelre 11698 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
13 0le1 10551 . . . . . . . . . . . . . . 15 0 ≤ 1
1413a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 0 ≤ 1)
15 eluzge2nn0 11727 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
1615nn0ge0d 11354 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
176, 12, 14, 16lt2sqd 13043 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2)))
1811, 17mpbid 222 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (1↑2) < (𝐴↑2))
199, 18eqbrtrrd 4677 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴↑2))
206, 5posdifd 10614 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1)))
2119, 20mpbid 222 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < ((𝐴↑2) − 1))
227, 21elrpd 11869 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
2322rpsqrtcld 14150 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ+)
2423rpred 11872 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
2524recnd 10068 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
2625mulid1d 10057 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((√‘((𝐴↑2) − 1)) · 1) = (√‘((𝐴↑2) − 1)))
2726oveq2d 6666 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
28 pell1qrss14 37432 . . . . . 6 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (Pell1QR‘((𝐴↑2) − 1)) ⊆ (Pell14QR‘((𝐴↑2) − 1)))
291, 28syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → (Pell1QR‘((𝐴↑2) − 1)) ⊆ (Pell14QR‘((𝐴↑2) − 1)))
30 1nn0 11308 . . . . . . 7 1 ∈ ℕ0
3130a1i 11 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℕ0)
328oveq2i 6661 . . . . . . . . 9 (((𝐴↑2) − 1) · (1↑2)) = (((𝐴↑2) − 1) · 1)
337recnd 10068 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
3433mulid1d 10057 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) · 1) = ((𝐴↑2) − 1))
3532, 34syl5eq 2668 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) · (1↑2)) = ((𝐴↑2) − 1))
3635oveq2d 6666 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = ((𝐴↑2) − ((𝐴↑2) − 1)))
375recnd 10068 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℂ)
38 1cnd 10056 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℂ)
3937, 38nncand 10397 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((𝐴↑2) − 1)) = 1)
4036, 39eqtrd 2656 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = 1)
41 pellqrexplicit 37441 . . . . . 6 (((((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = 1) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell1QR‘((𝐴↑2) − 1)))
421, 15, 31, 40, 41syl31anc 1329 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell1QR‘((𝐴↑2) − 1)))
4329, 42sseldd 3604 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell14QR‘((𝐴↑2) − 1)))
4427, 43eqeltrrd 2702 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ (Pell14QR‘((𝐴↑2) − 1)))
456, 24readdcld 10069 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 + (√‘((𝐴↑2) − 1))) ∈ ℝ)
4612, 24readdcld 10069 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ)
476, 23ltaddrpd 11905 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 < (1 + (√‘((𝐴↑2) − 1))))
486, 12, 24, 11ltadd1dd 10638 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 + (√‘((𝐴↑2) − 1))) < (𝐴 + (√‘((𝐴↑2) − 1))))
496, 45, 46, 47, 48lttrd 10198 . . 3 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴 + (√‘((𝐴↑2) − 1))))
50 pellfundlb 37448 . . 3 ((((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ∈ (Pell14QR‘((𝐴↑2) − 1)) ∧ 1 < (𝐴 + (√‘((𝐴↑2) − 1)))) → (PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))))
511, 44, 49, 50syl3anc 1326 . 2 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))))
5237, 38npcand 10396 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) + 1) = (𝐴↑2))
5352fveq2d 6195 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘(((𝐴↑2) − 1) + 1)) = (√‘(𝐴↑2)))
5412, 16sqrtsqd 14158 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘(𝐴↑2)) = 𝐴)
5553, 54eqtrd 2656 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘(((𝐴↑2) − 1) + 1)) = 𝐴)
5655oveq1d 6665 . . 3 (𝐴 ∈ (ℤ‘2) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) = (𝐴 + (√‘((𝐴↑2) − 1))))
57 pellfundge 37446 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
581, 57syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
5956, 58eqbrtrrd 4677 . 2 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
60 pellfundre 37445 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (PellFund‘((𝐴↑2) − 1)) ∈ ℝ)
611, 60syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) ∈ ℝ)
6261, 46letri3d 10179 . 2 (𝐴 ∈ (ℤ‘2) → ((PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))) ↔ ((PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))) ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))))
6351, 59, 62mpbir2and 957 1 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cdif 3571  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  cexp 12860  csqrt 13973  NNcsquarenn 37400  Pell1QRcpell1qr 37401  Pell14QRcpell14qr 37403  PellFundcpellfund 37404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444  df-squarenn 37405  df-pell1qr 37406  df-pell14qr 37407  df-pell1234qr 37408  df-pellfund 37409
This theorem is referenced by:  rmxyelqirr  37475  rmxycomplete  37482  rmbaserp  37484
  Copyright terms: Public domain W3C validator