MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1 Structured version   Visualization version   GIF version

Theorem rpnnen1 11820
Description: One half of rpnnen 14956, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number 𝑥 to the sequence (𝐹𝑥):ℕ⟶ℚ (see rpnnen1lem6 11819) such that ((𝐹𝑥)‘𝑘) is the largest rational number with denominator 𝑘 that is strictly less than 𝑥. In this manner, we get a monotonically increasing sequence that converges to 𝑥, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The and existence hypotheses provide for use with either nnex 11026 and qex 11800, or nnexALT 11022 and qexALT 11803. The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1.n ℕ ∈ V
rpnnen1.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1 ℝ ≼ (ℚ ↑𝑚 ℕ)

Proof of Theorem rpnnen1
Dummy variables 𝑗 𝑘 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . 4 (𝑚 = 𝑛 → (𝑚 / 𝑘) = (𝑛 / 𝑘))
21breq1d 4663 . . 3 (𝑚 = 𝑛 → ((𝑚 / 𝑘) < 𝑥 ↔ (𝑛 / 𝑘) < 𝑥))
32cbvrabv 3199 . 2 {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥} = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
4 oveq2 6658 . . . . . . . . 9 (𝑗 = 𝑘 → (𝑚 / 𝑗) = (𝑚 / 𝑘))
54breq1d 4663 . . . . . . . 8 (𝑗 = 𝑘 → ((𝑚 / 𝑗) < 𝑦 ↔ (𝑚 / 𝑘) < 𝑦))
65rabbidv 3189 . . . . . . 7 (𝑗 = 𝑘 → {𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦} = {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦})
76supeq1d 8352 . . . . . 6 (𝑗 = 𝑘 → sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) = sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ))
8 id 22 . . . . . 6 (𝑗 = 𝑘𝑗 = 𝑘)
97, 8oveq12d 6668 . . . . 5 (𝑗 = 𝑘 → (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗) = (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘))
109cbvmptv 4750 . . . 4 (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘))
11 breq2 4657 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑚 / 𝑘) < 𝑦 ↔ (𝑚 / 𝑘) < 𝑥))
1211rabbidv 3189 . . . . . . 7 (𝑦 = 𝑥 → {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦} = {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥})
1312supeq1d 8352 . . . . . 6 (𝑦 = 𝑥 → sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) = sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ))
1413oveq1d 6665 . . . . 5 (𝑦 = 𝑥 → (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘) = (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘))
1514mpteq2dv 4745 . . . 4 (𝑦 = 𝑥 → (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘)))
1610, 15syl5eq 2668 . . 3 (𝑦 = 𝑥 → (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘)))
1716cbvmptv 4750 . 2 (𝑦 ∈ ℝ ↦ (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗))) = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘)))
18 rpnnen1.n . 2 ℕ ∈ V
19 rpnnen1.q . 2 ℚ ∈ V
203, 17, 18, 19rpnnen1lem6 11819 1 ℝ ≼ (ℚ ↑𝑚 ℕ)
Colors of variables: wff setvar class
Syntax hints:  wcel 1990  {crab 2916  Vcvv 3200   class class class wbr 4653  cmpt 4729  (class class class)co 6650  𝑚 cmap 7857  cdom 7953  supcsup 8346  cr 9935   < clt 10074   / cdiv 10684  cn 11020  cz 11377  cq 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-q 11789
This theorem is referenced by:  reexALT  11826  rpnnen  14956
  Copyright terms: Public domain W3C validator