![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxmetlem | Structured version Visualization version GIF version |
Description: Lemma for rrxmet 23191. (Contributed by Thierry Arnoux, 5-Jul-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑𝑚 𝐼) ∣ ℎ finSupp 0} |
rrxmval.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
rrxmetlem.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
rrxmetlem.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
rrxmetlem.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
rrxmetlem.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
rrxmetlem.5 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
rrxmetlem.6 | ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) |
Ref | Expression |
---|---|
rrxmetlem | ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxmetlem.6 | . 2 ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) | |
2 | rrxmetlem.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) | |
3 | 1, 2 | sstrd 3613 | . . . . . 6 ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼) |
4 | 3 | sselda 3603 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘 ∈ 𝐼) |
5 | rrxmval.1 | . . . . . . . 8 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑𝑚 𝐼) ∣ ℎ finSupp 0} | |
6 | rrxmetlem.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
7 | 5, 6 | rrxf 23184 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) |
8 | 7 | ffvelrnda 6359 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℝ) |
9 | 8 | recnd 10068 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℂ) |
10 | 4, 9 | syldan 487 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹‘𝑘) ∈ ℂ) |
11 | rrxmetlem.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
12 | 5, 11 | rrxf 23184 | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝐼⟶ℝ) |
13 | 12 | ffvelrnda 6359 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℝ) |
14 | 13 | recnd 10068 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℂ) |
15 | 4, 14 | syldan 487 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐺‘𝑘) ∈ ℂ) |
16 | 10, 15 | subcld 10392 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℂ) |
17 | 16 | sqcld 13006 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℂ) |
18 | 2 | ssdifd 3746 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) |
19 | 18 | sselda 3603 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) |
20 | simpr 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) | |
21 | 20 | eldifad 3586 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ 𝐼) |
22 | 21, 9 | syldan 487 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) ∈ ℂ) |
23 | ssun1 3776 | . . . . . . . 8 ⊢ (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) | |
24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
25 | rrxmetlem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
26 | 0red 10041 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
27 | 7, 24, 25, 26 | suppssr 7326 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) = 0) |
28 | ssun2 3777 | . . . . . . . 8 ⊢ (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) | |
29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
30 | 12, 29, 25, 26 | suppssr 7326 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺‘𝑘) = 0) |
31 | 27, 30 | eqtr4d 2659 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
32 | 22, 31 | subeq0bd 10456 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝑘) − (𝐺‘𝑘)) = 0) |
33 | 32 | sq0id 12957 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
34 | 19, 33 | syldan 487 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
35 | rrxmetlem.5 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
36 | 1, 17, 34, 35 | fsumss 14456 | 1 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 ∖ cdif 3571 ∪ cun 3572 ⊆ wss 3574 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 supp csupp 7295 ↑𝑚 cmap 7857 Fincfn 7955 finSupp cfsupp 8275 ℂcc 9934 ℝcr 9935 0cc0 9936 − cmin 10266 2c2 11070 ↑cexp 12860 Σcsu 14416 distcds 15950 ℝ^crrx 23171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 |
This theorem is referenced by: rrxmet 23191 |
Copyright terms: Public domain | W3C validator |